Conformational changes of Aβ (1-42) monomers in different solvents.

J Mol Graph Model

Department of Mechanical Engineering, Korea University, Seoul 02481, Republic of Korea. Electronic address:

Published: April 2016

Amyloid proteins are known to be the main cause of numerous degenerative and neurodegenerative diseases. In general, amyloids are misfolded from monomers and they tend to have β-strand formations. These misfolded monomers are then transformed into oligomers, fibrils, and plaques. It is important to understand the forming mechanism of amyloids in order to prevent degenerative diseases to occur. Aβ protein is a highly noticeable protein which causes Alzheimer's disease. It is reported that solvents affect the forming mechanism of Aβ amyloids. In this research, Aβ1-42 was analyzed using an all-atom MD simulation with the consideration of effects induced by two disparate solvents: water and DMSO. As a result, two different conformation changes of Aβ1-42 were exhibited in each solvent. It was found that salt-bridge of Asp23 and Lys28 in Aβ1-42 was the key for amyloid folding based on the various analysis including hydrogen bond, electrostatic interaction energy and salt-bridge distance. Since this salt-bridge region plays a crucial role in initiating the misfolding of Aβ1-42, this research may shed a light for studies related in amyloid folding and misfolding.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmgm.2016.02.003DOI Listing

Publication Analysis

Top Keywords

misfolded monomers
8
forming mechanism
8
amyloid folding
8
conformational changes
4
changes aβ
4
aβ 1-42
4
1-42 monomers
4
monomers solvents
4
solvents amyloid
4
amyloid proteins
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!