Calcium phosphate ceramics with submicron-scaled surface structure can trigger bone formation in non-osseous sites and are expected to enhance bone formation in spine environment. In this study, two tricalcium phosphate ceramics having either a submicron-scaled surface structure (TCP-S) or a micron-scaled one (TCP-B) were prepared and characterized regarding their physicochemical properties. Granules (size 1-2 mm) of both materials were implanted on either left or right side of spinous process, between the two lumbar vertebrae (L3-L4), and in paraspinal muscle of eight beagles. After 12 weeks of implantation, ectopic bone was observed in muscle in TCP-S explants (7.7 ± 3.7%), confirming their ability to inductively form bone in non-osseous sites. In contrast, TCP-B implants did not lead to bone formation in muscle. Abundant bone (34.1 ± 6.6%) was formed within TCP-S implants beside the two spinous processes, while limited bone (5.1 ± 4.5%) was seen in TCP-B. Furthermore, the material resorption of TCP-S was more pronounced than that of TCP-B in both the muscle and spine environments. The results herein indicate that the submicron-scaled surface structured tricalcium phosphate ceramic could enhance bone regeneration as compared to the micron-scaled one in spine environment. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1865-1873, 2016.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jor.23201DOI Listing

Publication Analysis

Top Keywords

tricalcium phosphate
12
spine environment
12
submicron-scaled surface
12
bone formation
12
bone
9
structured tricalcium
8
phosphate ceramic
8
bone regeneration
8
phosphate ceramics
8
ceramics submicron-scaled
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!