Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Action potentials invading the presynaptic terminal trigger discharge of docked synaptic vesicles (SVs) by opening voltage-dependent calcium channels (CaVs) and admitting calcium ions (Ca(2+)), which diffuse to, and activate, SV sensors. At most synapses, SV sensors and CaVs are sufficiently close that release is gated by individual CaV Ca(2+) nanodomains centered on the channel mouth. Other synapses gate SV release with extensive Ca(2+) microdomains summed from many, more distant CaVs. We review the experimental preparations, theories, and methods that provided principles of release nanophysiology and highlight expansion of the field into synaptic diversity and modifications of release gating for specific synaptic demands. Specializations in domain gating may adapt the terminal for roles in development, transmission of rapid impulse frequencies, and modulation of synaptic strength.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tins.2016.01.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!