Ascochyta blight: isolation, characterization, and development of a rapid method to detect inhibitors of the chickpea fungal pathogen Ascochyta rabiei.

Fungal Biol

Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002 LRK Rosario, Argentina. Electronic address:

Published: March 2016

Ascochyta blight is the major disease attacking chickpea (Cicer arietinum) around the world. Since its first time report of isolation in Argentina in 2012, the pathogen has caused severe economic losses and has acquired a great importance. We report here the isolation of Ascochyta rabiei from infected chickpea beans cultivated in Santa Fe, Argentina; its identification by morphological analysis and molecular biology techniques based on internal transcribed spacer (ITS) sequence alignment, its biochemical characterization regarding the capacity to produce proteinase and phospholipase enzymes, and its antifungal susceptibility to common used antifungal agents. In order to detect new inhibitors for A. rabiei from natural sources, a bioautographic method was developed. From the screening method developed, we found that extracts from cultures of Aspergillus parasiticus are active against A. rabiei.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.funbio.2015.12.002DOI Listing

Publication Analysis

Top Keywords

ascochyta blight
8
detect inhibitors
8
ascochyta rabiei
8
report isolation
8
method developed
8
ascochyta
4
blight isolation
4
isolation characterization
4
characterization development
4
development rapid
4

Similar Publications

Ascochyta blight, caused by the necrotrophic fungus Ascochyta rabiei, is a major threat to chickpea production worldwide. Resistance genes with broad-spectrum protection against virulent A. rabiei strains are required to secure chickpea yield in the US Northern Great Plains.

View Article and Find Full Text PDF
Article Synopsis
  • Ascochyta blight, caused by a fungal pathogen, significantly threatens the global chickpea industry, particularly affecting Australia’s multimillion-dollar market through disease management costs and yield losses.
  • The disease was introduced to Australia in the 1970s and has since established itself with varying levels of aggressiveness among local isolates, including some that can severely impact even resistant chickpea varieties.
  • Recent genomic studies of 230 isolates revealed three main genetic clusters and indicated that highly aggressive traits emerged independently multiple times, suggesting that aggressiveness may be influenced by a combination of minor genetic factors and epigenomic variations.
View Article and Find Full Text PDF

Inter-specific hybridization is a key strategy in modern crop improvement, aiming to integrate desirable traits from wild species into cultivated backgrounds. This study delves into the evaluation and identification of advanced inter-specific derivatives (IDs) derived from crosses of cultivated chickpea with and . The primary aim was to incorporate desirable yield enhancement traits, disease resistance, and nutritional quality traits into cultivated chickpea.

View Article and Find Full Text PDF
Article Synopsis
  • Ascochyta blight is a significant issue for chickpea production worldwide, and controlling it typically involves fungicide use, which can impact crop quality.
  • Traditional diagnostic methods for detecting the Ascochyta rabiei pathogen require specialized equipment and trained personnel, making them time-consuming and complex.
  • A new rapid detection method using a molecular beacon probe has been developed, allowing for accurate pathogen detection in just 30 minutes and holding promise for future in-field applications despite being initially lab-based.
View Article and Find Full Text PDF

Metabolite profiling of chickpea () in response to necrotrophic fungus .

Front Plant Sci

August 2024

Department of Primary Industry Research and Development, Tamworth Agricultural Institute, Tamworth, New South Wales, Australia.

Introduction: Ascochyta blight (AB) caused by the necrotrophic fungus is one of the most significant diseases that limit the production of chickpea. Understanding the metabolic mechanisms underlying chickpea- interactions will provide important clues to develop novel approaches to manage this disease.

Methods: We performed metabolite profiling of the aerial tissue (leaf and stem) of two chickpea accessions comprising a moderately resistant breeding line (CICA1841) and a highly susceptible cultivar (Kyabra) in response to one of the highly aggressive Australian isolates TR9571 via non-targeted metabolomics analysis using liquid chromatography-mass spectrometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!