Disruption of ku70 involved in non-homologous end-joining facilitates homologous recombination but increases temperature sensitivity in the phytopathogenic fungus Penicillium digitatum.

Fungal Biol

Food Science Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Avda Agustín Escardino 7, 46980 Paterna, Valencia, Spain. Electronic address:

Published: March 2016

The dominant mechanism to repair double-stranded DNA breaks in filamentous fungi is the non-homologous end joining (NHEJ) pathway, and not the homologous recombination (HR) pathway that operates in the mutation of genes by replacement of target DNA for selection cassettes. The key to improve HR frequency is the inactivation of the NHEJ pathway by eliminating components of its Ku70/80 heterodimeric complex. We have obtained ku70 mutants of Penicillium digitatum, the main citrus postharvest pathogen. The increased efficiency of HR in Δku70 strains was demonstrated by the generation of mutants in two different chitin synthase genes (PdchsII and PdchsV). P. digitatum Δku70 strains showed no differences from the parental strain in vegetative growth, asexual development or virulence to citrus fruit, when experiments were conducted at the optimal temperature of 24°C. However, growth of Δku70 strains at temperatures higher than 24°C demonstrated a detrimental effect in axenic growth and conidia production. These observations are in agreement with previous studies describing differences between ku70 mutants and their parental strains in some fungal species, and must be taken into account for future applications of the Δku approach to increase HR efficiency in fungi.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.funbio.2015.11.001DOI Listing

Publication Analysis

Top Keywords

Δku70 strains
12
homologous recombination
8
penicillium digitatum
8
nhej pathway
8
ku70 mutants
8
disruption ku70
4
ku70 involved
4
involved non-homologous
4
non-homologous end-joining
4
end-joining facilitates
4

Similar Publications

Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.

View Article and Find Full Text PDF

Therapeutic potential of Bacillus-derived lipopeptides in controlling enteropathogens and modulating immune responses to mitigate post-weaning diarrhea in swine.

Vet Res Commun

January 2025

Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta N 36 Km 601, Río Cuarto City, 5800, Córdoba, Argentina.

Post-weaning diarrhea (PWD) is a major concern for pig producers, as stress and early weaning increase susceptibility to enteropathogens like enterotoxigenic Escherichia coli (ETEC) and Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium).

View Article and Find Full Text PDF

In recent years, there has been a global threat from emerging vector-borne diseases (VBD), despite the implementation of several vector control programs. Considering the benefits of bacterial pesticides, the present study aimed to isolate potential mosquitocidal bacteria from the various soil types collected from the Kasaragod (12.5°N, 75.

View Article and Find Full Text PDF

An aerobic, Gram-stain-positive, motile, coccus-shaped actinomycete, designated strain LSe6-4, was isolated from leaves of sea purslane (Sesuvium portulacastrum L.) in Thailand and subjected to a polyphasic taxonomic studies. Growth of the strain occurred at temperatures between 15 and 38 °C, and with NaCl concentrations 0-13%.

View Article and Find Full Text PDF

p-Coumaric acid (p-CA), an invaluable phytochemical, has novel bioactivities, including antiproliferative, anxiolytic, and neuroprotective effects, and is the main precursor of various flavonoids, such as caffeic acid, naringenin, and resveratrol. Herein, we report the engineering of Escherichia coli for de novo production of p-CA via the PAL-C4H pathway. As the base strain, we used the E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!