Download full-text PDF

Source
http://dx.doi.org/10.1055/s-0036-1579619DOI Listing

Publication Analysis

Top Keywords

biomechanical comparison
4
comparison isometric
4
isometric anatomic
4
anatomic medial
4
medial patellofemoral
4
patellofemoral ligament
4
ligament reconstruction
4
biomechanical
1
isometric
1
anatomic
1

Similar Publications

Purpose: Scleral cross-linking (SXL) with ultraviolet A (UVA) and riboflavin has already been used in laboratory studies for scleral stiffness increase as a potential treatment for progressive myopia and scleral ectasia. This study aims to investigate whether the regional application of scleral cross-linking (SXL) with ultraviolet A (UVA) and riboflavin in fresh porcine eye globes affects the ocular rigidity as well as its impact on intraocular pressure after an induced acute increase in the volume of intraocular fluid.

Methods: The study included two groups of fresh porcine eyes: an experimental group (n=20) that underwent scleral cross-linking (SXL) with riboflavin and UVA applied to the posterior sclera and a control group (n=20) that did not receive SXL treatment.

View Article and Find Full Text PDF

The meniscus plays a vital role in knee biomechanics, particularly in load distribution and stability. Meniscus root tears (MRTs) compromise these functions, resulting in biomechanical alterations and knee osteoarthritis. The effectiveness of different MRT treatments is not yet well defined.

View Article and Find Full Text PDF

Background: Medial meniscus posterior root tears (MMPRTs) significantly contribute to knee dysfunction, leading to abnormal biomechanics and accelerated cartilage degeneration. Arthroscopic transtibial pullout and all-inside repair are two commonly used techniques for treating MMPRTs, each with unique advantages and limitations.

Objective: To compare the clinical and functional outcomes of the transtibial pullout and all-inside repair techniques in the treatment of MMPRTs, with a focus on postoperative recovery, knee function, and complications.

View Article and Find Full Text PDF

Bringing biomechanics to ballet: a feasibility study using wearable technology during grand allegro.

Sports Biomech

January 2025

Artistic Health Department, The Australian Ballet, Southbank, Victoria, Australia.

Quantifying impact accelerations during ballet class may assist load management. The largest impact accelerations occur during the sequence of large (single or double-leg) jumps (grand allegro) but are potentially the most challenging class component for utilising wearable technology, and feasibility is unknown. This pilot study utilised wearable technology during class to (1) explore feasibility and acceptability, (2) quantify impact accelerations during the entire sequence of jumps during grand allegro and (3) compare impact accelerations between limbs (preferred and non-preferred landing limb).

View Article and Find Full Text PDF

Knee Extensor and Flexor Force Control after ACL Injury and Reconstruction: A Systematic Review and Meta-Analysis.

Med Sci Sports Exerc

February 2025

Cognition, Neuroplasticity, & Sarcopenia (CNS) Laboratory, Institute of Exercise & Rehabilitation Science, University of Central Florida, Orlando, FL.

Purpose: Reduced force control after anterior cruciate ligament (ACL) injury and reconstruction may contribute to poor function. Various metrics (linear and nonlinear) have been employed to quantify force control. The aims of this review were to synthesize evidence assessing knee extensor and flexor force control after ACL injury (ACLD) or reconstruction (ACLR) and to investigate the potential effects of injury management (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!