Objectives: To evaluate the association between sex-specific serum high sensitive C reactive protein (hsCRP) levels and NAFLD in a large population-based study.

Results: From Q1 to Q4, the incidence ratios were 21.1 (95% CI 17.5 24.7), 18.6 (95% CI 16.5 20.8), 24.8 (95% CI 22.4 27.2) and 31.1 (95% CI 28.5 33.6) in males and 6.2 (95% CI 4.4 8.0), 6.0 (95% CI 5.1 7.1), 11.4 (95% CI 9.2 13.7) and 19.5 (95% CI 16.1 22.9) in females. Compared with a 1.7-fold increase (Q4 vs Q2) in males, actuarial incidence increased 3.3-fold (Q4 vs Q2) in females. After adjusting for known confounding variables in this study, in the longitudinal population, compared with the reference group, those in Q1, Q3, and Q4 had HRs of 1.63 (95% CI 1.29-2.05), 1.11 (95% CI 0.93-1.31), 1.14 (95% CI 0.97-1.35) in male and 1.77 (95% CI 1.25-2.49), 1.22 (95% CI 0.93-1.59), 1.36 (95% CI 1.03-1.80) in female for NAFLD, respectively.

Methods: 8618 subjects from Wenzhou Medical Center of Wenzhou People's Hospital were included. Sex specific hsCRP quartiles (Q1 to Q4) were defined: 0-0.1, 0.2-0.4, 0.5-0.8 and 0.9-25.9 for male; 0-0.1, 0.2-0.6, 0.7-1.2 and1.3-28.4 for female. Applying Q2 as reference, Hazard ratios (HRs) and 95% confidence intervals (CIs) for NAFLD were calculated across each quartile of hsCRP.

Conclusions: We report that a sex-specific hsCRP level is independently associated with NAFLD. The association between hsCRP and NAFLD was significantly stronger in females than in males.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4924711PMC
http://dx.doi.org/10.18632/oncotarget.7401DOI Listing

Publication Analysis

Top Keywords

95%
15
sex-specific serum
8
serum high
8
high sensitive
8
sensitive reactive
8
reactive protein
8
large population-based
8
114 95%
8
nafld
5
parabolic relationship
4

Similar Publications

Article Synopsis
  • The study measured fibrinogen fluorescence at temperatures between 20 and 80 degrees Celsius across different pH levels.
  • It was found that raising the temperature from 20 to 40 degrees Celsius did not change the structure of fibrinogen in solutions with pH between 4.5 and 9.3.
  • However, temperatures between 40 to 50 degrees Celsius caused some structural changes in neutral solutions, and temperatures above 50-55 degrees Celsius led to significant denaturation of the fibrinogen molecule.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!