Acrolein is an irritating aldehyde generated during combustion of organic compounds. Altered autonomic activity has been documented following acrolein inhalation, possibly impacting myocardial synchrony and function. Given the ubiquitous nature of acrolein in the environment, we sought to better define the immediate and delayed functional cardiac effects of acrolein inhalation in vivo. We hypothesized that acrolein inhalation would increase markers of cardiac mechanical dysfunction, i.e., myocardial dyssynchrony and performance index in mice. Male C57Bl/6J mice were exposed to filtered air (FA) or acrolein (0.3 or 3.0 ppm) for 3 h in whole-body plethysmography chambers (n = 6). Echocardiographic analyses were performed 1 day before exposure and at 1 and 24 h post-exposure. Speckle tracking echocardiography revealed that circumferential strain delay (i.e., dyssynchrony) was increased at 1 and 24 h following exposure to 3.0 ppm, but not 0.3 ppm, when compared to pre-exposure and/or FA exposure. Pulsed wave Doppler of transmitral blood flow revealed that acrolein exposure at 0.3 ppm, but not 3.0 ppm, increased the Tei index of myocardial performance (i.e., decreased global heart performance) at 1 and 24 h post-exposure compared to pre-exposure and/or FA exposure. We conclude that short-term inhalation of acrolein can acutely modify cardiac function in vivo and that echocardiographic evaluation of myocardial synchrony and performance following exposure to other inhaled pollutants could provide broader insight into the health effects of air pollution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5918635 | PMC |
http://dx.doi.org/10.1007/s12012-016-9360-4 | DOI Listing |
Respir Physiol Neurobiol
January 2025
Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan. Electronic address:
Transient receptor potential ankyrin-1 (TRPA1) is expressed in the trigeminal nerves in the nasal cavity. It detects irritant chemicals such as formalin and acrolein, induces respiratory depression to protect against further inhalation, and elicits avoidance behavior. Although tobacco smoke contains formalin, acrolein, and other irritant chemicals, the possible contribution of TRPA1 to protection against tobacco smoke has yet to be fully understood.
View Article and Find Full Text PDFEnviron Int
November 2024
Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China.
A typical industrial park in the upper reaches of the Yangtze River Economic Belt, which is 70 km from the Chongqing urban center, was used to investigate the occurrence and exposure of harmful volatile organic compounds (VOCs). An exposure risk method and a risk-oriented source apportionment approach were performed to assess the inhalation risks and apportion VOC sources, respectively. The quantitative relationships between risk factors and pollution sources were established, identifying key pathogenic and odorous VOCs.
View Article and Find Full Text PDFEnviron Monit Assess
November 2024
Faculty of Environment, University of Science, Ho Chi Minh City, Vietnam.
The aim of this study is to assess the spatiotemporal variation, sources, and health impacts of the carbonyl compounds (carbonyls) in Ho Chi Minh City (HCMC), the third-most populous city in Southeast Asia. Sampling was conducted according to the US.EPA Method TO-11A, from 2012 to 2016 in both the dry and the rainy seasons at twelve sites.
View Article and Find Full Text PDFJ Hazard Mater
November 2024
School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China. Electronic address:
Indoor volatile organic compounds (VOCs) pose considerable health hazards. However, research on hazardous VOCs in Chinese residences has been conducted on a limited spectrum. This study used Monte Carlo simulations with data from Beijing, Shanghai, and Shenzhen to assess VOC health risks in Chinese homes.
View Article and Find Full Text PDFOral Dis
August 2024
Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA.
Objective: Electronic cigarette (e-cigarette) use among adults in the United States continues to rise. Particularly concerning is the impact of e-cigarette aerosol inhalation on the oral mucosa. Aerosols are derived from a heated e-liquid base of propylene glycol/glycerin (PG/G) often mixed with nicotine and chemical flavors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!