Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Despite their having much greater potential for compositional and structural diversity, heterometallic metal-organic frameworks (MOFs) reported so far have lagged far behind their homometallic counterparts in terms of CO2 uptake performance. Now the power of heterometallic MOFs is in full display, as shown by a series of new materials (denoted CPM-200s) with superior CO2 uptake capacity (up to 207.6 cm(3)/g at 273 K and 1 bar), close to the all-time record set by MOF-74-Mg. The isosteric heat of adsorption can also be tuned from -16.4 kJ/mol for CPM-200-Sc/Mg to -79.6 kJ/mol for CPM-200-V/Mg. The latter value is the highest reported for MOFs with Lewis acid sites. Some members of the CPM-200s family consist of combinations of metal ions (e.g., Mg/Ga, Mg/Fe, Mg/V, Mg/Sc) that have never been shown to coexist in any known crystalline porous materials. Such previously unseen combinations become reality through a cooperative crystallization process, which leads to the most intimate form of integration between even highly dissimilar metals, such as Mg(2+) and V(3+). The synergistic effects of heterometals bestow CPM-200s with the highest CO2 uptake capacity among known heterometallic MOFs and place them in striking distance of the all-time CO2 uptake record.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.5b13491 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!