We present a manifestly local, diffeomorphism invariant, and locally Poincaré invariant formulation of vacuum energy sequestering. In this theory, quantum vacuum energy generated by matter loops is canceled by auxiliary fields. The auxiliary fields decouple from gravity almost completely. Their only residual effect is an a priori arbitrary, finite contribution to the curvature of the background geometry, which is radiatively stable. Its value is to be determined by a measurement, like the finite part of any radiatively stable UV-sensitive quantity in quantum field theory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.116.051302 | DOI Listing |
Small
January 2025
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China.
Electromagnetic pollution protection and military stealth technologies underscore the urgent need to develop efficient electromagnetic wave-absorbing materials (EWAMs). Traditional EWAMs suffer from single absorption loss mechanisms, poor impedance matching, and weak reflection loss. To date, combining dielectric loss with magnetic loss in EWAMs have proven to be an effective approach to enhancing electromagnetic absorption performance.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
First-principles calculations, particularly density functional theory (DFT) combined with D3 dispersion correction (DFT+D3), have proven to be valuable tools in simulating the adsorption of lead ions on TiCO surfaces. However, conventional theoretical models assume electrically neutral systems under vacuum conditions, neglecting the solvent environment and electrode potential's crucial effects. This study employed an implicit solvent model, treating the solvent as a continuous and homogeneous medium to capture the influence of different solvents by varying their dielectric constants.
View Article and Find Full Text PDFMed Devices (Auckl)
January 2025
Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah, Salt Lake City, Utah, USA.
Purpose: The aim of this study was to use calorimetry to understand the difference in energy transferred by three phacoemulsification surgical platforms to the eye.
Patients And Methods: A phacoemulsification tip was lowered into a double-walled calorimeter filled with distilled water. The foot pedal was depressed for 30 seconds and the change in temperature of the water was measured by a temperature probe.
Adv Mater
January 2025
Department of Materials Science and Engineering, Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China.
Nickel oxide (NiO) is considered as a potential hole transport material in the fabrication of lead-tin (Pb-Sn) perovskite solar cells (PSCs) for tandem applications. However, the energy level mismatch and unfavorable redox reactions between Ni species and Sn at the NiO/perovskite interface pose challenges. Herein, high-performance Pb-Sn-based inorganic PSCs are demonstrated by modulating the NiO/perovskite interface with a multifunctional 4-aminobenzenesulfonic acid (4-ABSA) interlayer.
View Article and Find Full Text PDFPlant Methods
January 2025
Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701, USA.
Background: Plant cell walls are made of a complex network of interacting polymers that play a critical role in plant development and responses to environmental changes. Thus, improving plant biomass and fitness requires the elucidation of the structural organization of plant cell walls in their native environment. The C-based multi-dimensional solid-state nuclear magnetic resonance (ssNMR) has been instrumental in revealing the structural information of plant cell walls through 2D and 3D correlation spectral analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!