Mitomycin C (MC) and Decarbamoylmitomycin C (DMC) - a derivative of MC lacking the carbamate on C10 - are DNA alkylating agents. Their cytotoxicity is attributed to their ability to generate DNA monoadducts as well as intrastrand and interstrand cross-links (ICLs). The major monoadducts generated by MC and DMC in tumor cells have opposite stereochemistry at carbon one of the guanine-mitosene bond: trans (or alpha) for MC and cis (or beta) for DMC. We hypothesize that local disruptions of DNA structure from trans or cis adducts are responsible for the different biochemical responses produced by MC and DMC. Access to DNA substrates bearing cis and trans MC/DMC lesions is essential to verify this hypothesis. Synthetic oligonucleotides bearing trans lesions can be obtained by bio-mimetic methods. However, this approach does not yield cis adducts. This report presents the first chemical synthesis of a cis mitosene DNA adduct. We also examined the stereopreference exhibited by the two drugs at the mononucleotide level by analyzing the formation of cis and trans adducts in the reaction of deoxyguanosine with MC or DMC using a variety of activation conditions. In addition, we performed Density Functional Theory calculations to evaluate the energies of these reactions. Direct alkylation under autocatalytic or bifunctional conditions yielded preferentially alpha adducts with both MC and DMC. DFT calculations showed that under bifunctional activation, the thermodynamically favored adducts are alpha, trans, for MC and beta, cis, for DMC. This suggests that the duplex DNA structure may stabilize/oriente the activated pro-drugs so that, with DMC, formation of the thermodynamically favored beta products are possible in a cellular environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4807628 | PMC |
http://dx.doi.org/10.1016/j.bioorg.2016.02.003 | DOI Listing |
Bioorg Chem
June 2022
Department of Sciences, John Jay College of Criminal Justice, New York, NY 10019, United States; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States. Electronic address:
While interstrand crosslinks (ICLs) have been considered as one type of DNA damage in the past, there is mounting evidence suggesting that these highly cytotoxic lesions are processed differently by the cellular machinery depending upon the ICL structure. In this study, we examined the crosslinking ability of three mitomycins, the structure of the ICLs they produce and the cytotoxicity of the drugs toward three different cell lines. The drugs are: mitomycin C (1), decarbamoylmitomycin C (2), and a mitomycin-conjugate (3) whose mitosane moiety is linked to a N-methylpyrrole carboxamide.
View Article and Find Full Text PDFChemistry
October 2020
Science Department, John Jay College of Criminal Justice, 524 West 59th street, New York, NY, 10019, USA.
Mitomycin C (MC) an antitumor drug and decarbamoylmitomycin C (DMC), a derivative of MC lacking the carbamoyl moiety, are DNA alkylating agents which can form DNA interstrand crosslinks (ICLs) between deoxyguanosine residues located on opposing DNA strands. MC forms primarily deoxyguanosine adducts with a 1"-R stereochemistry at the guanine-mitosene bond (1"-α, trans) whereas DMC forms mainly adducts with a 1"-S stereochemistry (1"-β, cis). The crosslinking reaction is diastereospecific: trans-crosslinks are formed exclusively at CpG sequences, while cis-crosslinks are formed only at GpC sequences.
View Article and Find Full Text PDFBioorg Chem
November 2019
John Jay College of Criminal Justice, New York, 524 West 59(th) Street, New York, NY 10019, USA; The Graduate Center of the City University of New York, New York, NY 10016, USA. Electronic address:
Mitomycin C (MC), an anti-cancer drug, and its analog, decarbamoylmitomycin C (DMC), are DNA-alkylating agents. MC is currently used in the clinics and its cytotoxicity is mainly due to its ability to form Interstrand Crosslinks (ICLs) which impede DNA replication and, thereby, block cancer cells proliferation. However, both MC and DMC are also able to generate monoadducts with DNA.
View Article and Find Full Text PDFChem Res Toxicol
August 2018
John Jay College of Criminal Justice, 524 West 59th Street , New York , New York 10019 , United States.
Mitomycin C (MC) is an anticancer agent that alkylates DNA to form monoadducts and interstrand cross-links. Decarbamoylmitomycin C (DMC) is an analogue of MC lacking the carbamate on C10. The major DNA adducts isolated from treatment of culture cells with MC and DMC are N-deoxyguanosine (dG) adducts and adopt an opposite stereochemical configuration at the dG-mitosene bond.
View Article and Find Full Text PDFYonsei Med J
August 2018
Department of Physiology, School of Medicine, CHA University, Seongnam, Korea.
Purpose: To investigate the effect of combined inhibition of protein kinase B (AKT) and SRC on the growth and metastatic potential of human pancreatic cancer cells.
Materials And Methods: AKT and SRC were inhibited using 10-DEBC and PP2, respectively. The expression of their messenger RNAs were down-regulated by specific small interfering RNA (siRNA).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!