Background And Objective: pH in dental biofilms is of central importance for the development of caries. We used the ratiometric pH-sensitive dye C-SNARF-4 in combination with digital image analysis to monitor extracellular pH in dental biofilms grown in situ with and without sucrose supply.
Design: Dental biofilms (48 h) from 10 individuals were collected on glass slabs mounted on intra-oral appliances. During growth, appliances were immersed extra-orally in either physiological saline or 4% sucrose for 2 min, eight times per day. Fluorescence emissions of C-SNARF-4 in deep layers of the biofilms were recorded ex vivo with confocal microscopy for 15 min or for 1 h after exposure to 0.4% glucose. Extracellular pH was determined ratiometrically using digital image analysis.
Results: Extracellular pH dropped rapidly in most examined sites after addition of glucose. Distinct pH microenvironments were observed within single biofilms. The variation in pH was similar between sites within the same biofilm and sites from different individuals. pH drop patterns did not differ between biofilms exposed to sucrose-free and sucrose-rich environments.
Conclusion: The present study is the first of its kind to apply the combination of pH ratiometry and digital image analysis to systematically record extracellular pH in intact dental biofilms from several individuals for up to 1 h. We observed highly heterogeneous pH landscapes and the presence of acidogenic microenvironments - 'acidogenic hotspots' - within the biofilms. The data suggest that pH drops in young (48 h) dental biofilms are independent of the sucrose supply during growth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4759832 | PMC |
http://dx.doi.org/10.3402/jom.v8.30390 | DOI Listing |
Diagn Microbiol Infect Dis
December 2024
Department of Microbiology, Centre for infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai 600 077, Tamil Nadu, India. Electronic address:
Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative opportunistic pathogen posing serious risks to immunocompromised individuals due to its virulence factors and biofilm formation. This study evaluated the efficacy of methanol extract of Glycyrrhiza glabra (G.
View Article and Find Full Text PDFEur J Dent
December 2024
Department of Conservative Dentistry, Faculty of Dentistry, October University for Modern Sciences and Arts, Giza, Egypt.
Objective: Continuous advancements in composite resin materials have revolutionized and expanded its clinical use, improving its physical and mechanical properties. Attaining and retaining surface texture and gloss are crucial for the long-term durability of the composite resin material. This study investigated the supra-nanospherical filler composite material compared with different composite resin materials immersed in different beverages.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics nanodiagnostic and therapeutic group, The University of Queensland, Brisbane, QLD, 4006, Australia.
With the advent of multi-layered and 3D scaffolds, the understanding of microbiome composition and pathogenic mechanisms within polymicrobial biofilms is continuously evolving. A fundamental component in mediating the microenvironment and bacterial-host communication within the biofilm are bilayered nanoparticles secreted by bacteria, known as bacterial extracellular vesicles (BEVs), which transport key biomolecules including proteins, nucleic acids, and metabolites. Their characteristics and microbiome profiles are yet to be explored in the context of in vitro salivary polymicrobial biofilm.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Research and Development, ZimVie Dental, Palm Beach Gardens, Florida, USA.
Dental implant coronal surfaces designed with the primary goal of maintaining crestal bone levels may also promote bacterial adhesion, leading to soft tissue inflammation and peri-implant bone loss. Achieving an optimal surface roughness that minimizes bacterial adhesion while preserving crestal bone is crucial. It is hypothesized that a specific threshold surface roughness value may exist below which, and above which, initial bacterial adhesion does not statistically change.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Department of Basic Medical Science, Faculty of Medicine, Yozgat Bozok University, Yozgat, 66100, Türkiye, Turkey.
Background: Although surface finishing processes are effective against Streptococcus mutans biofilm, the mechanism of action of saliva with different acidity values has not been studied in detail. This study aims to produce four different all-ceramic materials in a single session with CAD/CAM devices and apply two different surface finishing processes, glazing and polishing, and then determine the retention of Streptococcus mutants on the surfaces of the materials in saliva with varying levels of acidity.
Methods: Zirconia-reinforced lithium silicate (Vita Suprinity, Vita Zahnfabrik, Bad Saöckingen, Germany), monochromatic feldspar (Vitablocs Mark 2, Vita Zahnfabrik, Bad Saöckingen, Germany), leucite glass ceramic (IPS Empress CAD, Ivoclar Vivadent, Liechtenstein), and monolithic zirconia (Incoris TZI (Cerec) Sirona, Germany) were used in the study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!