A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Emerging Role of Epigenetics in Cerebral Ischemia. | LitMetric

The Emerging Role of Epigenetics in Cerebral Ischemia.

Mol Neurobiol

Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.

Published: April 2017

Despite great progresses in the treatment and prevention of ischemic stroke, it is still among the leading causes of death and serious long-term disability all over the world, indicating that innovative neural regenerative and neuroprotective agents are urgently needed for the development of therapeutic approaches with greater efficacy for ischemic stroke. More and more evidence suggests that a spectrum of epigenetic processes play an important role in the pathophysiology of cerebral ischemia. In the present review, we first discuss recent developments in epigenetic mechanisms, especially their roles in the pathophysiology of cerebral ischemia. Specifically, we focus on DNA methylation, histone deacetylase, histone methylation, and microRNAs (miRNAs) in the regulation of vascular and neuronal regeneration after cerebral ischemia. Additionally, we highlight epigenetic strategies for ischemic stroke treatments, including the inhibition of histone deacetylase enzyme and DNA methyltransferase activities, and miRNAs. These therapeutic strategies are far from clinic use, but preliminary data indicate that neuroprotective agents targeting these pathways can modulate neural cell regeneration and promote brain repair and functional recovery after cerebral ischemia. A better understanding of how epigenetics influences the process and progress of cerebral ischemia will pave the way for discovering more sensitive and specific biomarkers and new targets and therapeutics for ischemic stroke.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-016-9788-3DOI Listing

Publication Analysis

Top Keywords

cerebral ischemia
24
ischemic stroke
16
neuroprotective agents
8
pathophysiology cerebral
8
histone deacetylase
8
cerebral
6
ischemia
6
emerging role
4
role epigenetics
4
epigenetics cerebral
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!