Size-based diagnostic reference ranges (DRRs) for contrast-enhanced pediatric abdominal computed tomography (CT) have been published in order to establish practical upper and lower limits of CTDI, DLP, and SSDE. Based on these DRRs, guidelines for establishing size-based SSDE target levels from the SSDE of a standard adult by applying a linear correction factor have been published and provide a great reference for dose optimization initiatives. The necessary step of designing manufacturer-specific CT protocols to achieve established SSDE targets is the responsibility of the Qualified Medical Physicist. The task is straightforward if fixed-mA protocols are used, however, more difficult when automatic exposure control (AEC) and automatic kV selection are considered. In such cases, the physicist must deduce the operation of AEC algorithms from technical documentation or through testing, using a wide range of phantom sizes. Our study presents the results of such testing using anthropomorphic phantoms ranging in size from the newborn to the obese adult. The effect of each user-controlled parameter was modeled for a single-manufacturer AEC algorithm (Siemens CARE Dose4D) and automatic kV selection algorithm (Siemens CARE kV). Based on the results presented in this study, a process for designing mA-modulated, pediatric abdominal CT protocols that achieve user-defined SSDE and kV targets is described.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5690190PMC
http://dx.doi.org/10.1120/jacmp.v17i1.5756DOI Listing

Publication Analysis

Top Keywords

automatic selection
12
computed tomography
8
pediatric abdominal
8
protocols achieve
8
ssde targets
8
algorithm siemens
8
siemens care
8
automatic
5
ssde
5
size-based protocol
4

Similar Publications

Whole examination AI estimation of fetal biometrics from 20-week ultrasound scans.

NPJ Digit Med

January 2025

School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.

The current approach to fetal anomaly screening is based on biometric measurements derived from individually selected ultrasound images. In this paper, we introduce a paradigm shift that attains human-level performance in biometric measurement by aggregating automatically extracted biometrics from every frame across an entire scan, with no need for operator intervention. We use a neural network to classify each frame of an ultrasound video recording.

View Article and Find Full Text PDF

An efficient deep learning system for automatic detection of Acute Lymphoblastic Leukemia.

ISA Trans

January 2025

Department of Electronics and Telecommunication, C. V. Raman Global University, Bhubaneswar 752054, Odisha, India. Electronic address:

Early and highly accurate detection of rapidly damaging deadly disease like Acute Lymphoblastic Leukemia (ALL) is essential for providing appropriate treatment to save valuable lives. Recent development in deep learning, particularly transfer learning, is gaining a preferred trend of research in medical image processing because of their admirable performance, even with small datasets. It inspires us to develop a novel deep learning-based leukemia detection system in which an efficient and lightweight MobileNetV2 is used in conjunction with ShuffleNet to boost discrimination ability and enhance the receptive field via convolution layer succession.

View Article and Find Full Text PDF

Objective: Segmentation of individual thigh muscles in MRI images is essential for monitoring neuromuscular diseases and quantifying relevant biomarkers such as fat fraction (FF). Deep learning approaches such as U-Net have demonstrated effectiveness in this field. However, the impact of reducing neural network complexity remains unexplored in the FF quantification in individual muscles.

View Article and Find Full Text PDF

Accurate segmentation of the left ventricular myocardium in cardiac MRI is essential for developing reliable deep learning models to diagnose left ventricular non-compaction cardiomyopathy (LVNC). This work focuses on improving the segmentation database used to train these models, enhancing the quality of myocardial segmentation for more precise model training. We present a semi-automatic framework that refines segmentations through three fundamental approaches: (1) combining neural network outputs with expert-driven corrections, (2) implementing a blob-selection method to correct segmentation errors and neural network hallucinations, and (3) employing a cross-validation process using the baseline U-Net model.

View Article and Find Full Text PDF

The Chang'e-6 (CE-6) landing area on the far side of the Moon is located in the southern part of the Apollo basin within the South Pole-Aitken (SPA) basin. The statistical analysis of impact craters in this region is crucial for ensuring a safe landing and supporting geological research. Aiming at existing impact crater identification problems such as complex background, low identification accuracy, and high computational costs, an efficient impact crater automatic detection model named YOLOv8-LCNET (YOLOv8-Lunar Crater Net) based on the YOLOv8 network is proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!