A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

On the impact of masking and blocking hypotheses for measuring the efficacy of new tuberculosis vaccines. | LitMetric

On the impact of masking and blocking hypotheses for measuring the efficacy of new tuberculosis vaccines.

PeerJ

Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain; Department of Theoretical Physics, University of Zaragoza, Zaragoza, Spain; Complex Networks and Systems Lagrange Lab, Institute for Scientific Interchange, Turin, Italy.

Published: February 2016

Over the past 60 years, the Mycobacterium bovis bacille Calmette-Guérin (BCG) has been used worldwide to prevent tuberculosis (TB). However, BCG has shown a very variable efficacy in different trials, offering a wide range of protection in adults against pulmonary TB. One of the most accepted hypotheses to explain these inconsistencies points to the existence of a pre-existing immune response to antigens that are common to environmental sources of mycobacterial antigens and Mycobacterium tuberculosis. Specifically, two different mechanisms have been hypothesized to explain this phenomenon: the masking and the blocking effects. According to masking hypothesis, previous sensitization confers some level of protection against TB that masks vaccine's effects. In turn, the blocking hypothesis postulates that previous immune response prevents vaccine taking of a new TB vaccine. In this work we introduce a series of models to discriminate between masking and blocking mechanisms and address their relative likelihood. We apply our methodology to the data reported by BCG-REVAC clinical trials, which were specifically designed for studying BCG efficacy variability. Our results yield estimates that are consistent with high levels of blocking (41% in Manaus -95% CI [14-68]- and 96% in Salvador -95% CI [52-100]-). Moreover, we also show that masking does not play any relevant role in modifying vaccine's efficacy either alone or in addition to blocking. The quantification of these effects around a plausible model constitutes a relevant step towards impact evaluation of novel anti-tuberculosis vaccines, which are susceptible of being affected by similar effects, especially if applied on individuals previously exposed to mycobacterial antigens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4756732PMC
http://dx.doi.org/10.7717/peerj.1513DOI Listing

Publication Analysis

Top Keywords

masking blocking
12
immune response
8
mycobacterial antigens
8
blocking
6
impact masking
4
blocking hypotheses
4
hypotheses measuring
4
efficacy
4
measuring efficacy
4
efficacy tuberculosis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!