In the present study, cobalt oxide (CoO) magnetic nanoparticles with block and sphere morphologies were synthesized using various surfactants, and the toxicity of the particles was analyzed by monitoring biomarkers of nanoparticle toxicity in zebrafish. The use of tartarate as a surfactant produced highly crystalline blocks of CoO nanoparticles with pores on the sides, whereas citrate lead to the formation of nanoparticles with a spherical morphology. CoO structure, crystallinity, size and morphology were studied using X-ray diffractogram and field emission scanning electron microscopy. Following an increase in nanoparticle concentration from 1 to 200 ppm, there was a corresponding increase in nitric oxide (NO) generation, induced by both types of nanoparticles [CoO-NP-B (block), r=0.953; CoO-NP-S (sphere), r=1.140]. Comparative analyses indicated that both types of nanoparticle produced significant stimulation at ≥5 ppm (P<0.05) compared with a control. Upon analyzing the effect of nanoparticle morphology on NO generation, it was observed that CoO-NP-S was more effective compared with CoO-NP-B (5 and 100 ppm, P<0.05; 200 ppm, P<0.01). Exposure to both types of nanoparticles produced reduction in liver glutathione (GSH) activity with corresponding increase in dose (CoO-NP-B, r=-0.359; CoO-NP-S, r=-0.429). However, subsequent analyses indicated that CoO-NP-B was more potent in inhibiting liver GSH activity compared with CoO-NP-S. CoO-NP-B proved to be toxic at 5 ppm (P<0.05) and GSH activity was almost completely inhibited at 200 ppm. A similar toxicity was observed with both types of CoO-NPs against brain levels of acetylcholinesterase (AChE; CoO-NP-B, r=-0.180; CoO-NP-S, r=-0.230), indicating the ability of synthesized CoO-NPs to cross the blood-brain barrier and produce neuronal toxicity. CoO-NP-B showed increased inhibition of brain AChE activity compared with CoO-NP-S (1,5, and 10 ppm, P<0.05; 50, 100 and 200 ppm, P<0.01). These results suggested that the morphology of nanoparticle and surface area contribute to toxicity, which may have implications for their biological application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4734246PMC
http://dx.doi.org/10.3892/etm.2015.2946DOI Listing

Publication Analysis

Top Keywords

coo nanoparticles
8
nanoparticles block
8
block sphere
8
nanoparticles
5
synthesis coo
4
morphology
4
sphere morphology
4
morphology investigation
4
investigation influence
4
influence morphology
4

Similar Publications

Antibiotics are emerging environmental contaminants posing critical health risks due to their tendency to concentrate in living things and eventually infiltrate the human body. Sulfamethoxazole (SMZ) is among the commonly detected antibiotics in wastewater requiring effective removal approach. A sustainable, thermally stable and easily separable magnetic sporopollenin-cellulose triacetate (Msp-CTA) was developed via a simple step synthesis for eliminating SMZ from aqueous solution.

View Article and Find Full Text PDF

Mineral-Mediated Epitaxial Growth of CoO Nanoparticles for Efficient Electrochemical HO Activation.

ACS Nano

January 2025

Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China.

Article Synopsis
  • Solution-phase epitaxy is an effective method for creating functional nanomaterials, with the choice of support significantly influencing their properties.
  • The research focuses on using calcination-modified kaolinite as a support to enhance the growth of hexagonal CoO nanoparticles, achieving over 40 times higher activity in HO electrochemical activation compared to those without support.
  • Findings highlight the importance of aluminum sites in kaolinite, which improve the formation and electron transfer processes of CoO nanoparticles, ultimately demonstrating the potential of nanoclays as valuable supports in nanomaterial synthesis.
View Article and Find Full Text PDF

The combination of hydrogen evolution, nitric oxide oxidation and Zn-nitrate battery for energy conversion and storage by an efficient nitrogen-dopped CoO electrocatalyst with Turing structure.

J Colloid Interface Sci

December 2024

Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China. Electronic address:

We tuned the morphology from the needle-like Co(CO)(OH)·0.11HO to the unique Turing-structured CoCO through controlling the amount of glycerol in the solvothermal system, and then synthesized the Turing structure consisting of N-50 %-CoO hollow nanoparticles though the Kirkendall effect during nitriding process, which was applied as a novel bifunctional self-supporting electrode for efficient electrocatalytic hydrogen evolution reaction (HER) and electrocatalytic NO oxidation reaction (eNOOR). The eNOOR can be not only used as a substitution anode reaction of oxygen evolution reaction (OER) to couple with HER for efficient water splitting, but the production of nitrate from eNOOR also provides a strategy for the development of Zn-nitrate battery.

View Article and Find Full Text PDF

Cooperation of covalent bonds and coordinative bonds stabilizing the Si-binder-Cu interfaces for extending lifespan of silicon anodes.

J Colloid Interface Sci

December 2024

Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China; Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, People's Republic of China. Electronic address:

Binders provide a straightforward and efficient strategy to mitigate the significant challenge of volume expansion in silicon anodes for lithium-ion batteries. To improve the cycle life of silicon anodes, a cross-linked binder carboxymethyl cellulose-phytic acid-pyrrole (CMC-DP) is designed and synthesized using carboxymethyl cellulose, phytic acid, and pyrrole. The numerous hydroxyl groups in phytic acid provide abundant binding sites for the formation of hydrogen and ester bonds.

View Article and Find Full Text PDF

In present findings, a simple pyrolysis technique was applied to decorate S and N doped graphene with RuS2-CoO nanoparticles synthesizing a heterostructured nanocomposite RuS2-CoO@SNG. XPS results demonstrate the elemental composition of these nanomaterials with the hint of metal-metal charge transfer phenomenon likely due to heterostructure composition. These modifications led to a significant active surface area resulting in elevated electrocatalytic performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!