Cone photoreceptor cyclic nucleotide-gated (CNG) channels play a pivotal role in cone phototransduction, which is a process essential for daylight vision, color vision, and visual acuity. Mutations in the cone channel subunits CNGA3 and CNGB3 are associated with human cone diseases, including achromatopsia, cone dystrophies, and early onset macular degeneration. Mutations in CNGB3 alone account for 50% of reported cases of achromatopsia. This work investigated the role of CNGB3 in cone light response and cone channel structural stability. As cones comprise only 2-3% of the total photoreceptor population in the wild-type mouse retina, we used Cngb3(-/-)/Nrl(-/-) mice with CNGB3 deficiency on a cone-dominant background in our study. We found that, in the absence of CNGB3, CNGA3 was able to travel to the outer segments, co-localize with cone opsin, and form tetrameric complexes. Electroretinogram analyses revealed reduced cone light response amplitude/sensitivity and slower response recovery in Cngb3(-/-)/Nrl(-/-) mice compared with Nrl(-/-) mice. Absence of CNGB3 expression altered the adaptation capacity of cones and severely compromised function in bright light. Biochemical analysis demonstrated that CNGA3 channels lacking CNGB3 were more resilient to proteolysis than CNGA3/CNGB3 channels, suggesting a hindered structural flexibility. Thus, CNGB3 regulates cone light response kinetics and the channel structural flexibility. This work advances our understanding of the biochemical and functional role of CNGB3 in cone photoreceptors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4861441PMC
http://dx.doi.org/10.1074/jbc.M115.696138DOI Listing

Publication Analysis

Top Keywords

channel structural
12
structural flexibility
12
cone light
12
light response
12
cone
11
cngb3
9
cyclic nucleotide-gated
8
cone channel
8
role cngb3
8
cngb3 cone
8

Similar Publications

TMEM16A, a key calcium-activated chloride channel, is crucial for many physiological and pathological processes such as cancer, hypertension, and osteoporosis, etc. However, the regulatory mechanism of TMEM16A is poorly understood, limiting the discovery of effective modulators. Here, we unveil an allosteric gating mechanism by presenting a high-resolution cryo-EM structure of TMEM16A in complex with a channel inhibitor that we identified, Tamsulosin, which is resolved at 2.

View Article and Find Full Text PDF

Reticulating Crystalline Porous Materials for Asymmetric Heterogeneous Catalysis.

Adv Mater

December 2024

School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China.

Asymmetric catalysis is essential for addressing the increasing demand for enantiopure compounds. Recent advances in reticular chemistry have demonstrated that metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) possess highly regular porous architectures, exceptional tunability, and the ability to incorporate chiral functionalities through their open channels or cavities. These characteristics make them highly effective and enantioselective catalysts for a wide range of asymmetric transformations.

View Article and Find Full Text PDF

The clogging performance of single-winged labyrinth drip irrigation tapes is influenced by a variety of factors during the muddy fertilizer water irrigation process. In this paper, we designed a uniform orthogonal test to study the effects of fertilizer concentration, sediment content and working pressure on the clogging of single-wing labyrinth drip irrigation tapes. The observed data from the experiment were analysed and calculated using range analysis, variance analysis, and main-effect multiple comparison analysis, then the optimal working conditions were determined.

View Article and Find Full Text PDF

Higher-order transient membrane protein structures.

Proc Natl Acad Sci U S A

January 2025

Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY 10065.

This study shows that five membrane proteins-three GPCRs, an ion channel, and an enzyme-form self-clusters under natural expression levels in a cardiac-derived cell line. The cluster size distributions imply that these proteins self-oligomerize reversibly through weak interactions. When the concentration of the proteins is increased through heterologous expression, the cluster size distributions approach a critical distribution at which point a phase transition occurs, yielding larger bulk phase clusters.

View Article and Find Full Text PDF

Higher-order transient structures and the principle of dynamic connectivity in membrane signaling.

Proc Natl Acad Sci U S A

January 2025

Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY 10065.

We examine the role of higher-order transient structures (HOTS) in M2R regulation of GIRK channels. Electron microscopic membrane protein location maps show that both proteins form HOTS that exhibit a statistical bias to be near each other. Theoretical calculations and electrophysiological measurements suggest that channel activity is isolated near larger M2R HOTS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!