Pasteurella multocida is a major animal pathogen that causes a range of diseases including fowl cholera. P. multocida infections result in considerable losses to layer and breeder flocks in poultry industries worldwide. Both killed whole-cell and live-attenuated vaccines are available; these vaccines vary in their protective efficacy, particularly against heterologous strains. Moreover, until recently there was no knowledge of P. multocida LPS genetics and structure to determine precisely how LPS structure affects the protective capacity of these vaccines. In this study we show that defined lipopolysaccharide (LPS) mutants presented as killed whole-cell vaccines elicited solid protective immunity only against P. multocida challenge strains expressing highly similar or identical LPS structures. This finding indicates that vaccination of commercial flocks with P. multocida killed cell formulations will not protect against strains producing an LPS structure different to that produced by strains included in the vaccine formulation. Conversely, protective immunity conferred by vaccination with live P. multocida strains was found to be largely independent of LPS structure. Birds vaccinated with a range of live mutants belonging to the L1 and L3 LPS genotypes, each expressing a specific truncated LPS structure, were protected against challenge with the parent strain. Moreover, birds vaccinated with any of the five LPS mutants belonging to the L1 LPS genotype were also protected against challenge with an unrelated strain and two of the five groups vaccinated with live LPS mutants belonging to the L3 genotype were protected against challenge with an unrelated strain. In summary, vaccination with live P. multocida aroA mutants producing full-length L1 or L3 LPS or vaccination with live strains producing shortened L1 LPS elicited strong protective immunity against both homologous and heterologous challenge.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vaccine.2016.02.017 | DOI Listing |
Microb Pathog
January 2025
Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Electronic address:
Following a period of disuse owing to the emergence of multidrug-resistant Gram-negative bacteria, colistin has regained global attention as an antibiotic of last resort. The resurgence in its utilization has led to a concurrent increase in acquired resistance, presenting a significant challenge in clinical treatment. Predominantly, resistance mechanisms involve alterations in the lipid A component of the lipopolysaccharide (LPS) structure.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea.
Background/objectives: Aronia extract or its active compounds, especially anthocyanin, have shown potential for Alzheimer's disease (AD)-related pathologies, including neuroinflammation, fibrillogenesis of amyloid beta (Aβ), and cognitive impairment. However, there was still concern about their structural instability in vivo and in vitro. To solve the instability of anthocyanins, we combined aronia bioactive factions (ABFs) and alginic acid via electrostatic molecular interactions and created an ABF-alginic acid nanocomplex (AANCP).
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
Background: Abel () is widely cultivated and serves as an important source of edible oil. Yet, during oil production, pruned branches generate significant waste and contribute to environmental pollution.
Objectives: In this work, we obtain a natural polysaccharide from the branches of and optimize its extraction using Box-Behnken design (BBD), which is a statistical method commonly used in response surface methodology.
Molecules
January 2025
Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia.
Dual inhibition of cyclooxygenase-2 (COX-2) and lipoxygenase (LOX) is a recognized strategy for enhanced anti-inflammatory effects in small molecules, offering potential therapeutic benefits for individuals at risk of dementia, particularly those with neurodegenerative diseases, common cancers, and diabetes type. Alzheimer's disease (AD) is the most common cause of dementia, and the inhibition of acetylcholinesterase (AChE) is a key approach in treating AD. Meanwhile, Caspase-3 catalyzes early events in apoptosis, contributing to neurodegeneration and subsequently AD.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2025
Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030000, China.
A water-soluble polysaccharide from foxtail millet (FM-D1) was isolated and purified through gradient ethanol precipitation and column chromatography. Size-Exclusion Chromatography-Multi-Angle Light Scattering-Refractive Index (SEC-MALLS-RI) and high-performance anion-exchange chromatography (HPAEC) analyses revealed that FM-D1 constitutes a highly purified neutral polysaccharide exclusively composed of glucose as the sugar unit, with a molecular weight of 14.823 kDa.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!