Objectives: To evaluate whether Hypoxia-inducible factor-2α (HIF-2α) regulates expression of endochondral ossification-related molecules in human OA meniscus.

Methods: Expressions of HIF-2α, type X collagen (COL10), matrix metalloproteinase (MMP)-13, and vascular endothelial growth factor (VEGF) in non-OA and OA menisci were analyzed by real-time RT-PCR and immunohistochemistry (IHC). Meniscal cells from OA patients were treated with interleukin-1β (IL-1β) and gene expression was analyzed. After knockdown of HIF-2α in OA meniscal cells, COL10 and MMP-13 expression were analyzed by RT-PCR, western blotting, immunofluorescence and ELISA.

Result: Histological analysis demonstrated weak staining of the superficial layer and large round cells in OA meniscus. RT-PCR analysis showed that HIF-2α, COL10, MMP-13, and VEGF mRNA expressions were higher in OA than non-OA meniscal cells. IHC showed a coordinated staining pattern of HIF-2α, COL10, and MMP-13 in OA meniscus. IL-1β treatment increased HIF-2α, COL10, and MMP-13 expressions in OA meniscal cells, and knockdown of HIF-2α suppressed IL-1β-mediated increase in COL10 and MMP-13 expression.

Conclusions: These results suggested that HIF-2α may cause meniscal matrix degradation by transactivation of MMP-13. HIF-2α may be a therapeutic target for modulating matrix degradation in both articular cartilage and meniscus during knee OA progression.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00011-016-0926-1DOI Listing

Publication Analysis

Top Keywords

meniscal cells
20
col10 mmp-13
20
hif-2α col10
12
hif-2α
9
hypoxia-inducible factor-2α
8
type collagen
8
expression analyzed
8
knockdown hif-2α
8
hif-2α meniscal
8
matrix degradation
8

Similar Publications

Background: Meniscal injuries that fail to heal instigate catabolic changes in the knee's microenvironment, posing a high risk for developing posttraumatic osteoarthritis (PTOA). Previous research has suggested that human cartilage-derived progenitor cells (hCPCs) can stimulate meniscal repair in a manner that depends on stromal cell-derived factor 1 (SDF-1) pathway activity.

Hypothesis: Overexpressing the SDF-1 receptor CXCR4 in hCPCs will increase cell trafficking and further improve the repair efficacy of meniscal injuries.

View Article and Find Full Text PDF

Strategies to repair the meniscus have achieved limited success; thus, a cell-based therapy combined with an appropriate biocompatible scaffold could be an interesting alternative to overcome this issue. The aim of this project is to analyze different cell populations and a collagen gel scaffold as a potential source for meniscus tissue engineering applications. Dermal fibroblasts (DFs) and mesenchymal stem cells (MSCs) isolated from adipose tissue (ASCs) or bone marrow (BMSCs) were analyzed.

View Article and Find Full Text PDF

The effective and translational strategy to regenerate knee meniscal fibrocartilage remained challenging. Herein, we first identified vascular smooth muscle cells (VSMCs) transdifferentiated into fibrochondrocytes and participated in spontaneous meniscal regeneration using smooth muscle cell lineage tracing transgenic mice meniscal defect model. Then, we identified low-intensity pulsed ultrasound (LIPUS) acoustic stimulus enhanced fibrochondrogenic transdifferentiation of VSMCs in vitro and in vivo.

View Article and Find Full Text PDF

The clinical potential of meniscal progenitor cells.

J Cartil Jt Preserv

December 2024

Department of Sports Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.

Introduction: The meniscus is an important cushioning structure of the knee joint, with the maintenance of its normal structure and function playing a crucial role in protecting the joint from early degeneration. Stem/progenitor cells could be the key to help researchers to have a deeper understanding of the biological process of meniscal injury repair and may be important in the meniscus tissue regeneration processes. To the best of our knowledge, there is currently a lack of comprehensive reviews on existing research about the meniscus progenitor cells (MPCs).

View Article and Find Full Text PDF

HBP-A is the main active component of a traditional Chinese medicine Huaizhen Yanggan Capsule, for the remarkable treatment of knee osteoarthritis (KOA). This study aimed to elucidate the ameliorative effect of HBP-A on meniscus hypertrophy and mineralisation in KOA and the molecular mechanism of its action. An Hartley guinea pig model of KOA that underwent anterior cruciate ligament transection (ACLT) and a model of rat primary meniscus fibrochondrocytes (PMFs) were used to investigate the ameliorative effect of HBP-A on meniscal hypertrophy and calcification and its signal transduction mechanism of action.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!