Notoginsenoside R1 (NGR1) is a phytoestrogen that is isolated from Panax notoginseng It is used in China to treat many diseases, including hypoxic-ischemic encephalopathy (HIE), and it has been shown to target estrogen receptors. Endoplasmic reticulum (ER) stress plays an important role in the development of cell apoptosis during ischemia, and ER stress is known to be regulated by estrogen; however, the neuroprotective mechanisms of NGR1 in neonatal HIE is unclear. In this study, oxygen-glucose deprivation/reoxygenation (OGD/R) in primary cortical neurons and unilateral ligation of the common carotid artery (CCL), followed by exposure to a hypoxic environment in 7-day-old postnatal Sprague-Dawley rats were used to mimic HIE episodes. Potential neuroprotective effects of NGR1 against neonatal HIE and its mechanisms were examined. After HIE conditions in vitro and in vivo, we administered NGR1 or the estrogen receptor inhibitor ICI-182780 and measured cell apoptosis, brain injury by MTT assay, TTC stain, and so forth. Expression of estrogen receptors α (ERα) and β (ERβ), ER stress-associated proteins was detected by Western blot upon stimulation with HIE, NGR1, or ICI-182780. Results showed that after HIE, ER chaperone GRP78 was activated, ER stress-associated proapoptotic proteins (CHOP, PERK, ERO1-α, and IRE1α) were increased, caspase-12 was increased, and BCL-2 was decreased. The ER stress response and neuronal apoptosis were attenuated by NGR1 treatment. However, neuroprotective properties of NGR1 against HIE-induced apoptosis and ER stress were attenuated by ICI-182780. These results suggest that NGR1 may be an effective treatment of HIE by reducing ER stress-induced neuronal apoptosis and brain injury via estrogen receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.115.230359DOI Listing

Publication Analysis

Top Keywords

estrogen receptors
12
injury estrogen
8
endoplasmic reticulum
8
reticulum stress
8
ngr1
8
hie
8
cell apoptosis
8
ngr1 neonatal
8
neonatal hie
8
apoptosis brain
8

Similar Publications

Estrogen hormones are primarily associated with their role as female sex hormones responsible for primary and secondary sexual development. Estrogen receptors are known to undergo age-dependent decreases due to age-related changes in hormone production. In the mitochondria, estrogen functions by reducing the production of reactive oxygen species in the electron transport chain, inhibiting apoptosis, and regulating mitochondrial DNA content.

View Article and Find Full Text PDF

In May 2021, the M/V ship fire disaster led to the largest maritime spill of resin pellets (nurdles) and burnt plastic (pyroplastic). Field samples collected from beaches in Sri Lanka nearest to the ship comprised nurdles and pieces of pyroplastic. Three years later, the toxicity of the spilled material remains unresolved.

View Article and Find Full Text PDF

The use of effect-based methods in water monitoring for identifying risks to aquatic organisms and human health is important for aiding regulatory decisions. In the past decades, the database on monitoring, especially in surface waters, has grown as this aquatic environment is openly exposed to various contamination sources. With regard to endocrine disruption, estrogenic and androgenic effects have been primarily investigated.

View Article and Find Full Text PDF

A Dynamic Shift in Estrogen Receptor Expression During Granulosa Cell Differentiation in the Ovary.

Endocrinology

January 2025

Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, USA.

This study uncovers a dynamic shift in estrogen receptor expression during granulosa cell (GC) differentiation in the ovary, highlighting a transition from estrogen receptor alpha (ESR1) to estrogen receptor beta (ESR2). Using a transgenic mouse model with Esr1-iCre-mediated Esr2 deletion, we demonstrate that ESR2 expression is absent in GCs derived from ESR1-expressing ovarian surface epithelium (OSE) cells. Single-cell analysis of the OSE-GC lineage reveals a developmental trajectory from Esr1-expressing OSE cells to Foxl2-expressing pre-GCs, culminating in GCs exclusively expressing Esr2.

View Article and Find Full Text PDF

Fullerenols, a water-soluble polyhydroxy derivative of fullerene, hold promise in medical and materials science due to their unique properties. However, concerns about their potential embryotoxicity remain. Using a pregnancy mouse model and metabolomics analysis, our findings reveal that fullerenols exposure during pregnancy not only significantly reduced mice placental weight and villi thickness, but also altered the classes and concentrations of metabolites in the mouse placenta.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!