Nuclear spins with quantum numbers >1/2 can interact with a static magnetic field, or a local electric field gradient, to produce quantized energy levels. If the magnetic field interaction dominates, we are doing nuclear magnetic resonance (NMR). If the interaction of the nuclear electric quadrupole with electric field gradients is much stronger, this is nuclear quadrupole resonance (NQR). The two are extremes of a continuum, as the ratio of one interaction to the other changes. In this work, we look at this continuum from a single, unified viewpoint based on a Liouville-space approach: the direct method. This method does not require explicit operators and their commutators, unlike Hamiltonian methods. We derive both the quadrupole-perturbed NMR solution and also the Zeeman-perturbed NQR results. Furthermore, we examine the polarization of these signals, because this is different between pure NMR and pure NQR spectroscopy. Spin 3/2 is the focus here, but the approach is perfectly general and can be applied to any spin. Copyright © 2016 John Wiley & Sons, Ltd.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrc.4418 | DOI Listing |
Nat Mater
January 2025
Institute of Electrical and Microengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Chirality, a basic property of symmetry breaking, is crucial for fields such as biology and physics. Recent advances in the study of chiral systems have stimulated interest in the discovery of symmetry-breaking states that enable exotic phenomena such as spontaneous gyrotropic order and superconductivity. Here we examine the interaction between light chirality and electron spins in indium selenide and study the effect of magnetic field on emerging tunnelling photocurrents at the Van Hove singularity.
View Article and Find Full Text PDFSci Rep
January 2025
School of Safety and Management Engineering, Hunan Institute of Technology, Hengyang, 421002, China.
The extraction of coal seams with high gas content and low permeability presents significant challenges, particularly due to the extended period required for gas extraction to meet safety standards and the inherently low extraction efficiency. Hydraulic fracturing technology, widely employed in the permeability enhancement of soft and low-permeability coal seams, serves as a key intervention. This study focuses on the high-rank raw coal from the No.
View Article and Find Full Text PDFNeuroimage
January 2025
School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing, 100191, China; Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, 100191, Beijing, China; National Innovation Platform for industry-Education Integration in Medicine-Engineering Interdisciplinary, Shandong Key Laboratory for Magnetic Field-free Medicine and Functional Imaging, Shandong University, Research Institute of Shandong University, Jinan, 250014, China; National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, 310051, China; State Key Laboratory of Traditional Chinese Medicine Syndrome/Health Construction Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Hefei National Laboratory, Hefei, 230088, China. Electronic address:
The optically pumped magnetometer (OPM) based magnetoencephalography (MEG) system offers advantages such as flexible layout and wearability. However, the position instability or jitter of OPM sensors can result in bad channels and segments, which significantly impede subsequent preprocessing and analysis. Most common methods directly reject or interpolate to repair these bad channels and segments.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.
Controlling the rate of electron spin relaxation in paramagnetic molecules is essential for contemporary applications in molecular magnetism and quantum information science. However, the physical mechanisms of spin relaxation remain incompletely understood, and new spectroscopic observables play an important role in evaluating spin dynamics mechanisms and structure-property relationships. Here, we use cryogenic magnetic circular dichroism (MCD) spectroscopy and pulse electron paramagnetic resonance (EPR) in tandem to examine the impact of ligand field (d-d) excited states on spin relaxation rates.
View Article and Find Full Text PDFVet Radiol Ultrasound
January 2025
Ospedale Veterinario "I Portoni Rossi", Anicura Italy, Diagnostic Imaging Department (Mattei, Specchi), Surgical Department (Pratesi), Neuroradiology Department (Bernardini), Bologna, Italy.
Cranial cruciate ligament (CCL) disease causes variable stifle instability assessed by specific clinical tests. Radiographs are performed to measure the tibial plateau angle (TPA) for planning tibial plateau leveling osteotomy (TPLO) surgery. Concomitant damage to other intra-articular structures, for which clinical detection is unreliable, may occur and potentially affect the surgical outcome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!