The elevation of oxidative stress preferentially in cancer cells by inhibiting thioredoxin reductase (TrxR) and/or enhancing reactive oxygen species (ROS) production has emerged as an effective strategy for selectively targeting cancer cells. In this study, we designed and synthesized 21 ligustrazine-curcumin hybrids (10a-u). Biological evaluation indicated that the most active compound 10d significantly inhibited the proliferation of drug-sensitive (A549, SPC-A-1, LTEP-G-2) and drug-resistant (A549/DDP) lung cancer cells but had little effect on nontumor lung epithelial-like cells (HBE). Furthermore, 10d suppressed the TrxR/Trx system and promoted intracellular ROS accumulation and cancer cell apoptosis. Additionally, 10d inhibited the NF-κB, AKT, and ERK signaling, P-gp-mediated efflux of rhodamine 123, P-gp ATPase activity, and P-gp expression in A549/DDP cells. Finally, 10d repressed the growth of implanted human drug-resistant lung cancer in mice. Together, 10d acts a novel TrxR inhibitor and may be a promising candidate for intervention of lung cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jmedchem.5b01203 | DOI Listing |
Drugs Aging
January 2025
Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, 60 Fenwood Road, no. 6016U, Boston, MA, 02115, USA.
Purpose Of Review: The purpose of this review is to outline considerations for treating older adults with rheumatoid arthritis-associated interstitial lung disease (RA-ILD) as it relates to infection, comorbidities, cancer, and quality of life.
Recent Findings: The recent 2023 American College of Rheumatology/American College of Chest Physicians guideline conditionally recommended specific disease-modifying antirheumatic drugs (DMARDs), antifibrotics, and short-term glucocorticoids to treat RA-ILD. Since RA-ILD often affects older adults, we contextualize these pharmacologic options related to infection, gastrointestinal (GI) effects, cancer, cardiovascular disease, and quality of life.
Nat Commun
January 2025
Bioinformatics and computational systems biology of cancer, Institut Curie, Inserm U900, PSL Research University, Paris, France.
Immunotherapy is improving the survival of patients with metastatic non-small cell lung cancer (NSCLC), yet reliable biomarkers are needed to identify responders prospectively and optimize patient care. In this study, we explore the benefits of multimodal approaches to predict immunotherapy outcome using multiple machine learning algorithms and integration strategies. We analyze baseline multimodal data from a cohort of 317 metastatic NSCLC patients treated with first-line immunotherapy, including positron emission tomography images, digitized pathological slides, bulk transcriptomic profiles, and clinical information.
View Article and Find Full Text PDFSignal Transduct Target Ther
January 2025
Department of Medical Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
This is a randomized, double-blind, placebo-controlled phase 3 clinical trial (ClinicalTrials.gov, NCT04878016) conducted in 54 hospitals in China. Adults who were histologically diagnosed and never treated for extensive-stage small cell lung cancer (ES-SCLC) were enrolled.
View Article and Find Full Text PDFCancer Cell Int
January 2025
Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, 550004, P. R. China.
Background: XB130, a classical adaptor protein, exerts a critical role in diverse cellular processes. Aberrant expression of XB130 is closely associated with tumorigenesis and aggressiveness. However, the mechanisms governing its expression regulation remain poorly understood.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 road, Guishan District, Taoyuan, Taiwan.
Background: The Golgi apparatus is widely considered a secretory center and a hub for different signaling pathways. Abnormalities in Golgi dynamics can perturb the tumor microenvironment and influence cell migration. Therefore, unraveling the regulatory network of the Golgi and searching for pharmacological targets would facilitate the development of novel anticancer therapies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!