Background: We are interested in exploring dedicated, high-performance cardiac CT systems optimized to provide the best tradeoff between system cost, image quality, and radiation dose.

Objective: We sought to identify and evaluate a broad range of CT architectures that could provide an optimal, dedicated cardiac CT solution.

Methods: We identified and evaluated thirty candidate architectures using consistent design choices. We defined specific evaluation metrics related to cost and performance. We then scored the candidates versus the defined metrics. Lastly, we applied a weighting system to combine scores for all metrics into a single overall score for each architecture. CT experts with backgrounds in cardiovascular radiology, x-ray physics, CT hardware and CT algorithms performed the scoring and weighting.

Results: We found nearly a twofold difference between the most and the least promising candidate architectures. Architectures employed by contemporary commercial diagnostic CT systems were among the highest-scoring candidates. We identified six architectures that show sufficient promise to merit further in-depth analysis and comparison.

Conclusion: Our results suggest that contemporary diagnostic CT system architectures outperform most other candidates that we evaluated, but the results for a few alternatives were relatively close. We selected six representative high-scoring candidates for more detailed design and further comparative evaluation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7017544PMC
http://dx.doi.org/10.3233/XST-160537DOI Listing

Publication Analysis

Top Keywords

candidate architectures
8
architectures
6
cardiac system
4
system architecture
4
architecture study
4
study background
4
background interested
4
interested exploring
4
exploring dedicated
4
dedicated high-performance
4

Similar Publications

Leaf vein, an essential part of leaf architecture, plays significant roles in shaping the proper leaf size. To date, the molecular mechanisms governing leaf development including leaf venation patterning remains poorly understood in birch. Here, we performed the genome-wide identification of homeodomain-like (HD-like) superfamily genes using phylogenetic analysis and revealed the functional role of a potential HD-like gene in leaf growth and development using transgenic technology and transcriptomic sequencing.

View Article and Find Full Text PDF

Background: Hypertension (HT) is the most prevalent risk factor for cardiovascular disease (CVD) worldwide. Despite being a highly heritable trait, the underlying mechanisms of HT remain elusive due to its complex genetic architecture. Discovering disease-associated proteins with causal genetic evidence offers a potential strategy for identifying therapeutic targets for HT.

View Article and Find Full Text PDF

In this first QTL mapping study of embryo size in barley, novel and stable QTL were identified and candidate genes underlying a significant locus independent of kernel size were identified based on orthologous analysis and comparison of the whole-genome assemblies for both parental genotypes of the mapping population. Embryo, also known as germ, in cereal grains plays a crucial role in plant development. The embryo accounts for only a small portion of grain weight but it is rich in nutrients.

View Article and Find Full Text PDF

Eco-friendly one-pot hydrothermal synthesis of cyclodextrin metal-organic frameworks for enhanced CO capture.

Carbohydr Polym

March 2025

Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin 150030, China; College of Food Science, Northeast Agricultural University, Harbin 150030, China.

Polysaccharide-based metal-organic frameworks have attracted widespread attention due to their combination of the biocompatibility and flexibility of polysaccharides. Cyclodextrin are interesting bio-ligands in the construction of polysaccharide-based MOFs. Conventional methods for preparing cyclodextrin metal-organic frameworks (CD-MOFs) are often time-consuming and inefficient.

View Article and Find Full Text PDF

Advancing efficiency in deep-blue OLEDs: Exploring a machine learning-driven multiresonance TADF molecular design.

Sci Adv

January 2025

Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan.

The pursuit of boron-based organic compounds with multiresonance (MR)-induced thermally activated delayed fluorescence (TADF) is propelled by their potential as narrowband blue emitters for wide-gamut displays. Although boron-doped polycyclic aromatic hydrocarbons in MR compounds share common structural features, their molecular design traditionally involves iterative approaches with repeated attempts until success. To address this, we implemented machine learning algorithms to establish quantitative structure-property relationship models, predicting key optoelectronic characteristics, such as full width at half maximum (FWHM) and main peak wavelength, for deep-blue MR candidates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!