Purpose: We assessed the therapeutic efficacy of FDA-approved anti-epileptic drug Levetiracetam (LEV) to reduce post-traumatic nonconvulsive seizure (NCS) activity and promote neurobehavioral recovery following 10% frontal penetrating ballistic-like brain injury (PBBI) in male Sprague-Dawley rats.

Methods: Experiment 1 anti-seizure study: 50 mg/kg LEV (25 mg/kg maintenance doses) was given twice daily for 3 days (LEV3D) following PBBI; outcome measures included seizures incidence, frequency, duration, and onset. Experiment 2 neuroprotection studies: 50 mg/kg LEV was given twice daily for either 3 (LEV3D) or 10 days (LEV10D) post-injury; outcome measures include motor (rotarod) and cognitive (water maze) functions.

Results: LEV3D treatment attenuated seizure activity with significant reductions in NCS incidence (54%), frequency, duration, and delayed latency to seizure onset compared to vehicle treatment. LEV3D treatment failed to improve cognitive or motor performance; however extending the dosing regimen through 10 days post-injury afforded significant neuroprotective benefit. Animals treated with the extended LEV10D dosing regimen showed a twofold improvement in rotarod task latency to fall as well as significantly improved spatial learning performance (24%) in the MWM task.

Conclusions: These findings support the dual anti- seizure and neuroprotective role of LEV, but more importantly identify the importance of an extended dosing protocol which was specific to the therapeutic targets studied.

Download full-text PDF

Source
http://dx.doi.org/10.3233/RNN-150580DOI Listing

Publication Analysis

Top Keywords

penetrating ballistic-like
8
ballistic-like brain
8
brain injury
8
mg/kg lev
8
outcome measures
8
frequency duration
8
lev3d treatment
8
dosing regimen
8
neuroprotection anti-seizure
4
anti-seizure effects
4

Similar Publications

Deep vein thrombosis and pulmonary embolism prophylaxis is an important part of trauma care. Despite an increased risk of thrombotic complications, the use of venous thrombosis chemoprophylaxis in penetrating traumatic brain injury (pTBI) patients is met with reluctance from neurosurgeons because of concern for the exacerbation of intracerebral hemorrhage. The objective of this study was to provide initial pre-clinical evidence of the effects of Lovenox (LVX) administration following pTBI with significant intracerebral hemorrhage.

View Article and Find Full Text PDF

Traumatic brain injury (TBI)-induced intracerebral hematoma is a major driver of secondary injury pathology such as neuroinflammation, cerebral edema, neurotoxicity, and blood-brain barrier dysfunction, which contribute to neuronal loss, motor deficits, and cognitive impairment. Cluster of differentiation 47 (CD47) is an antiphagocytic cell surface protein inhibiting hematoma clearance. This study was designed to evaluate the safety and efficacy of blockade of CD47 via intravenous (i.

View Article and Find Full Text PDF

There is a growing body of evidence that the delivery of cell-derived exosomes normally involved in intracellular communication can reduce secondary injury mechanisms after brain and spinal cord injury and improve outcomes. Exosomes are nanometer-sized vesicles that are released by Schwann cells and may have neuroprotective effects by reducing post-traumatic inflammatory processes as well as promoting tissue healing and functional recovery. The purpose of this study was to evaluate the beneficial effects of human Schwann-cell exosomes (hSC-Exos) in a severe model of penetrating ballistic-like brain injury (PBBI) in rats and investigate effects on multiple outcomes.

View Article and Find Full Text PDF

Several studies have demonstrated the clinical utility of tranexamic acid (TXA) for use in trauma patients presenting with significant hemorrhage. Tranexamic acid is an antifibrinolytic that inhibits plasminogen activation, and plasmin activity has been shown to mitigate blood loss and reduce all-cause mortality in the absence of adverse vascular occlusive events. Recent clinical developments indicate TXA is safe to use in patients with concomitant traumatic brain injury (TBI); however, the prehospital effects are not well understood.

View Article and Find Full Text PDF

Blood-Based Brain and Global Biomarker Changes after Combined Hypoxemia and Hemorrhagic Shock in a Rat Model of Penetrating Ballistic-Like Brain Injury.

Neurotrauma Rep

August 2021

Program for Neurotrauma, Neuroproteomics, and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA.

Penetrating traumatic brain injury (pTBI) often occurs with systemic insults such as hemorrhagic shock (HS) and hypoxemic (HX). This study examines rat models of penetrating ballistic-like brain injury (PBBI) and HX+HS to assess whether the blood levels of brain and systemic response biomarkers phosphorylated neurofilament-heavy protein (pNF-H), neurofilament-light protein (NF-L), αII-spectrin, heat shock protein (HSP70), and high mobility group box 1 protein (HMGB1) can distinguish pTBI from systemic insults and guide in pTBI diagnosis, prognosis, and monitoring. Thirty rats were randomly assigned to sham, PBBI, HS+HX, and PBBI+HS+HX groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!