Protection against oxidative stress by vitamin D in cone cells.

Cell Biochem Funct

Department of Life Sciences, Glasgow Caledonian University, Glasgow, UK.

Published: March 2016

Photoreceptor degeneration (PD) refers to a group of heterogeneous outer retinal dystrophies characterized by the death of photoreceptors. Both oxidative stress and inflammation are involved in the pathogenesis of PD. We investigate whether vitamin D has a potential for the treatment of PD by evaluating the anti-oxidative stress and anti-inflammatory properties of the active form of vitamin D3 , 1,α, 25-dihydroxyvitamin D3 , in a mouse cone cell line, 661W. Mouse cone cells were treated with H2 O2 or a mixture of H2 O2 and vitamin D; cell viability was determined. The production of reactive oxygen species (ROS) in treated and untreated cells was measured. The expression of key anti-oxidative stress and inflammatory genes in treated and untreated cells was determined. Treatment with vitamin D significantly increased cell viability and decreased ROS production in 661W cells under oxidative stress induced by H2 O2 . H2 O2 treatment in 661W cells can significantly down-regulate the expression of antioxidant genes and up-regulate the expression of neurotoxic cytokines. Vitamin D treatment significantly reversed these effects and restored the expression of antioxidant genes. Vitamin D treatment also can block H2 O2 induced oxidative damages. The data suggested that vitamin D may offer a therapeutic potential for patients with PD.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbf.3167DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
vitamin
8
cone cells
8
anti-oxidative stress
8
mouse cone
8
cell viability
8
treated untreated
8
untreated cells
8
661w cells
8
expression antioxidant
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!