There is a significant interest to develop high-performance and cost-effective electrode materials for next-generation sodium ion batteries. Herein, we report a facile synthesis method for nanosized V2O5/C composite cathodes and their electrochemical performance as well as energy storage mechanism. The composite exhibits a discharge capacity of 255 mAh g(-1) at a current density of 0.05 C, which surpasses that of previously reported layered oxide materials. Furthermore, the electrode shows good rate capability; discharge capacity of 160 mAh g(-1) at a current density of 1 C. The reaction mechanism of V2O5 upon sodium insertion/extraction is investigated using ex situ X-ray diffraction (XRD) and synchrotron based near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Ex situ XRD result of the fully discharged state reveals the appearance of NaV2O5 as a major phase with minor Na2V2O5 phase. Upon insertion of sodium into the array of parallel ladders of V2O5, it was confirmed that lattice parameter of c is increased by 9.09%, corresponding to the increase in the unit-cell volume of 9.2%. NEXAFS results suggest that the charge compensation during de/sodiation process accompanied by the reversible changes in the oxidation state of vanadium (V(4+) ↔ V(5+)).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5b11954 | DOI Listing |
ACS Appl Mater Interfaces
March 2016
Center for Energy Convergence Research, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea.
There is a significant interest to develop high-performance and cost-effective electrode materials for next-generation sodium ion batteries. Herein, we report a facile synthesis method for nanosized V2O5/C composite cathodes and their electrochemical performance as well as energy storage mechanism. The composite exhibits a discharge capacity of 255 mAh g(-1) at a current density of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!