This article explores possible mechanisms governing extracellular matrix deposition in engineered cartilaginous cell pellets. A theoretical investigation is carried out alongside an experimental study measuring proteoglycan and collagen volume fractions within murine chondrogenic (ATDC-5) cell pellets. The simple mathematical model, which adopts a nutrient-dependent proteoglycan production rate, successfully reproduces the periphery-dominated proteoglycan deposition, characteristic of the growth pattern observed experimentally within pellets after 21 days of culture. The results suggest that this inhomogeneous proteoglycan production is due to nutrient deficiencies at the pellet centre. Our model analysis further indicates that a spatially uniform distribution of proteoglycan matrix could be maintained by initiating the culture process with a smaller-sized pellet. Finally, possible extensions are put forward with an aim to improve the model predictions for the early behaviour, where different mechanisms appear to dominate the matrix production within the pellets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4758662PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0147302PLOS

Publication Analysis

Top Keywords

extracellular matrix
8
matrix deposition
8
deposition engineered
8
cell pellets
8
proteoglycan production
8
proteoglycan
5
engineered micromass
4
micromass cartilage
4
cartilage pellet
4
pellet cultures
4

Similar Publications

Chromatin-site-specific accessibility: A microtopography-regulated door into the stem cell fate.

Cell Rep

December 2024

Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 311121, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, Zhejiang Province 314400, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang Province 310058, China. Electronic address:

Biomaterials that mimic extracellular matrix topography are crucial in tissue engineering. Previous research indicates that certain biomimetic topography can guide stem cells toward multiple specific lineages. However, the mechanisms by which topographic cues direct stem cell differentiation remain unclear.

View Article and Find Full Text PDF

Exposure to Nanoplastics Cause Caudal Vein Plexus Damage and Hematopoietic Dysfunction by Oxidative Stress Response in Zebrafish .

Int J Nanomedicine

December 2024

Key Laboratory of Bioresources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, People's Republic of China.

Introduction: The proliferation of nanoplastics (NPs) has emerged as a significant environmental concern due to their extensive use, raising concerns about potential adverse effects on human health. However, the exact impacts of NPs on the early development of hematopoietic organs remain poorly understood.

Methods: This investigation utilized fluorescence microscopy to observe the effects of various NP concentrations on the caudal vein plexus (CVP) development in zebrafish embryos.

View Article and Find Full Text PDF

With the rapid emergence of pufferfish aquaculture and processing industries, fish skin is underutilized as a byproduct of processing, leading to resource waste. In this study, skin collagen (TBSC) was extracted by acetic acid solubilization and its physicochemical properties were analyzed. The effects of TBSC and the TBSC hydrolysate (TBSCH) on ultraviolet (UV) irradiation-induced photoaging were investigated using a mouse model.

View Article and Find Full Text PDF

[Current advances in the analysis of free RNA modified nucleosides by high performance liquid chromatography-tandem mass spectrometry].

Se Pu

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;3. University of Chinese Academy of Sciences, Beijing 100049, China.

Post-transcriptional ribonucleic acid (RNA) modifications play crucial roles in regulating gene expression, with both eukaryotic and prokaryotic RNA exhibiting more than 170 distinct and ubiquitous modifications. RNA turnover generates numerous free nucleosides, including unmodified nucleosides and a variety of modified ones. Unlike unmodified nucleosides, modified nucleosides are not further degraded or used in the salvage-synthesis pathway owing to a lack of specific enzymes, which leads to the cytosolic accumulation or cellular efflux of modified nucleosides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!