Comparisons of whole-genome sequences from ancient and contemporary samples have pointed to several instances of archaic admixture through interbreeding between the ancestors of modern non-Africans and now extinct hominids such as Neanderthals and Denisovans. One implication of these findings is that some adaptive features in contemporary humans may have entered the population via gene flow with archaic forms in Eurasia. Within Africa, fossil evidence suggests that anatomically modern humans (AMH) and various archaic forms coexisted for much of the last 200,000 yr; however, the absence of ancient DNA in Africa has limited our ability to make a direct comparison between archaic and modern human genomes. Here, we use statistical inference based on high coverage whole-genome data (greater than 60×) from contemporary African Pygmy hunter-gatherers as an alternative means to study the evolutionary history of the genus Homo. Using whole-genome simulations that consider demographic histories that include both isolation and gene flow with neighboring farming populations, our inference method rejects the hypothesis that the ancestors of AMH were genetically isolated in Africa, thus providing the first whole genome-level evidence of African archaic admixture. Our inferences also suggest a complex human evolutionary history in Africa, which involves at least a single admixture event from an unknown archaic population into the ancestors of AMH, likely within the last 30,000 yr.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4772012 | PMC |
http://dx.doi.org/10.1101/gr.196634.115 | DOI Listing |
Sci Rep
January 2025
Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
Malaria has been a leading cause of death in human populations for centuries and remains a major public health challenge in African countries, especially affecting children. Among the five Plasmodium species infecting humans, Plasmodium falciparum is the most lethal. Ancient DNA research has provided key insights into the origins, evolution, and virulence of pathogens that affect humans.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA.
Symbioses are major drivers of organismal diversification and phenotypic innovation. However, how long-term symbioses shape whole genome evolution in metazoans is still underexplored. Here, we use a giant clam (Tridacna maxima) genome to demonstrate how symbiosis has left complex signatures in an animal's genome.
View Article and Find Full Text PDFCurr Biol
December 2024
Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
Predation is an important driver of species-level change in modern and fossil ecosystems, often through selection for defensive phenotypes in prey responding to predation pressures over time. Records of changes in shell morphology and injury patterns in biomineralized taxa are ideal for demonstrating such adaptive responses. The rapid increase in diversity and abundance of biomineralizing organisms during the early Cambrian is often attributed to predation and an evolutionary arms race.
View Article and Find Full Text PDFCurr Biol
December 2024
Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06520-8106, USA; Peabody Museum of Natural History, Yale University, New Haven, CT 06520-8106, USA.
The United States Endangered Species Act (ESA) of 1973 set a precedent for biodiversity conservation across the globe. A key requirement of protections afforded by the ESA is the accurate delimitation of imperiled species. We present a comparative reference-based taxonomic approach to species delimitation that integrates genomic and morphological data for objectively assessing the distinctiveness of species targeted for protection by governmental agencies.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
Land use change threatens global biodiversity and compromises ecosystem functions, including pollination and food production. Reduced taxonomic α-diversity is often reported under land use change, yet the impacts could be different at larger spatial scales (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!