Aminoglycoside antibiotics are widely used in human therapy and veterinary medicine. We report herein a detailed study on the natural-organic-matter- (NOM-) photosensitized degradation of aminoglycosides in aqueous media under simulated solar irradiation. It appears that the direct reaction of the excited states of NOM ((3)NOM*) with aminoglycosides is minor. The contributions of reactive oxygen species (ROSs) in the bulk solutions are also unimportant, as determined by an assessment based on steady-state concentrations and bimolecular reaction rate constants in a homogeneous reaction model. The inhibition of the photodegradation by isopropamide is rationalized through competitive sorption with aminoglycosides on the NOM surface, whereas the addition of isopropanol negligibly affects degradation because it quenches HO(•) in the bulk solution but not HO(•) localized on the NOM surface where aminoglycosides reside. Therefore, a sorption-enhanced phototransformation mechanism is proposed. The sorption of aminoglycosides on NOM follows a dual-mode model involving Langmuir and linear isotherms. The steady-state concentration of HO(•) on the surface of NOM was calculated as 10(-14) M, 2 orders of magnitude higher than that in the bulk solution. This fundamental information is important in the assessment of the fate and transport of aminoglycosides in aqueous environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.5b05234 | DOI Listing |
Water Res
January 2025
Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China; School of Public Health, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Marine Pollution, Department of Chemistry and School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China; Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao SAR, China. Electronic address:
Rivers play an important role as reservoirs and sinks for antibiotic resistance genes (ARGs). However, it remains underexplored for the resistome and associated mobilome in river ecosystems, and hosts of riverine ARGs particularly the pathogenic ones are rarely studied. This study for the first time conducted a longitudinal metagenomic analysis to unveil the resistome, mobilome, and microbiome in river water, by collecting samples from 16 rivers in Hong Kong over a three-year period and using both short-read and long-read sequencing.
View Article and Find Full Text PDFSci Total Environ
January 2025
School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd Ll57 2UW, UK.
Antimicrobial resistance (AMR) is a global health challenge, with hospitals and wastewater treatment plants (WWTPs) serving as significant pathways for the dissemination of antibiotic resistance genes (ARGs). This study investigates the potential of wastewater-based epidemiology (WBE) as an early warning system for assessing the burden of AMR at the population level. In this comprehensive year-long study, effluent was collected weekly from three large hospitals, and treated and untreated wastewater were collected monthly from three associated community WWTPs.
View Article and Find Full Text PDFJ Wound Care
January 2025
Jobst Vascular Institute, ProMedica Health Network, Wound Care Program, Toledo, Ohio, US.
Objective: The presence of microorganisms in a wound may lead to the development of pathologically extensive inflammation, and either delay or prevent the healing of hard-to-heal (chronic) wounds. The aim of this case series is to explore the use of topical gentamicin ointment, an aminoglycoside with activity against aerobic Gram-negative bacteria, as an option to address hard-to-heal wounds.
Method: We present a retrospective case series of patients with hard-to-heal wounds of varying pathophysiologies treated with topical gentamicin.
Molecules
December 2024
Departamento de Nefrología, Hospital Centenario Miguel Hidalgo, Aguascalientes 20240, Mexico.
Currently, a global health crisis is being caused by microbial resistance, in which plays a crucial role, being considered the highest-priority microorganism by the World Health Organization (WHO) for discovering new antibiotics. As a result, phytochemicals have emerged as a potential alternative to combat resistant strains, since they can exert antimicrobial activity through various mechanisms and, at the same time, represent a more natural and safe option. This study analyzes the antimicrobial effects of guava leaf extract in ten clinical isolates of extensively drug-resistant (XDR) , using the agar diffusion technique and the microdilution method to determine the minimum inhibitory concentrations (MICs).
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Hamidiye Medicine Faculty, Department of Medical Biology, University of Health Sciences, Istanbul, Türkiye.
Background: Despite their biocompatibility, metal implants are susceptible to infections, leading to implant failure and patient complications. The purpose of this study was to investigate the antibacterial potential of antibiotic-coated titanium and stainless steel implants.
Methods: The study was designed as an experimental in vitro study, and it was conducted at the Department of Immunology of the University of Health Sciences, Istanbul/ Turkiye in January and February 2024.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!