A dodecapeptide corresponding to the external N-terminal sequence of the human low-density-lipoprotein (LDL) receptor was synthesized. Antibodies raised in rabbits against the peptide were purified and were shown to react specifically with the peptide and with human LDL receptor of fibroblasts, HeLa cells and lymphocytes using binding studies and immunoblotting. By indirect immunogold analysis, antibodies bound to the LDL receptor of human lymphocytes could be revealed as clusters. Anti-receptor peptide immunoglobulins specifically bound to the human HeLa cell's LDL receptor with a lower affinity than LDL (Kd x 3). The anti-receptor peptide immunoglobulins and 125I-labelled-LDL competed with each other for the LDL-receptor sites. Antibodies failed to react with lymphocytes of subjects with the homozygous form of familial hypercholesterolaemia. Cross-reactivity with the dodecapeptide of the bovine LDL receptor was limited, but this cross-reactivity was confirmed by the binding of anti-receptor peptide immunoglobulins to the LDL receptor from bovine lymphocytes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1133496PMC
http://dx.doi.org/10.1042/bj2630753DOI Listing

Publication Analysis

Top Keywords

ldl receptor
24
anti-receptor peptide
12
peptide immunoglobulins
12
human low-density-lipoprotein
8
bovine lymphocytes
8
receptor
7
ldl
7
human
5
lymphocytes
5
peptide
5

Similar Publications

Background: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, with the worst prognosis among all subtypes. The impact of distinct cell subpopulations within the tumor microenvironment (TME) on TNBC patient prognosis has yet to be clarified.

Methods: Utilizing single-cell RNA sequencing (scRNA-seq) integrated with bulk RNA sequencing (bulk RNA-seq), we applied Cox regression models to compute hazard ratios, and cross-validated prognostic scoring using a GLMNET-based Cox model.

View Article and Find Full Text PDF

CD36 in liver diseases.

Hepatol Commun

January 2025

Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.

Cluster of differentiation 36 (CD36) is a transmembrane glycoprotein with the ability to bind to multiple ligands and perform diverse functions. Through the recognition of long-chain fatty acids, proteins containing thrombospondin structural homology repeat domains such as thrombospondin-1, and molecules with molecular structures consistent with danger- or pathogen-associated molecular patterns, CD36 participates in various physiological and pathological processes of the body. CD36 is widely expressed in various cell types, including hepatocytes and KCs in the liver, where it plays a pivotal role in lipid metabolism, inflammation, and oxidative stress.

View Article and Find Full Text PDF

Vesicular stomatitis virus (VSV) represents a significant advancement in therapeutic medicine, offering unique molecular and cellular characteristics that make it exceptionally suitable for medical applications. The bullet-shaped morphology, RNA genome organization, and cytoplasmic replication strategy provide fundamental advantages for both vaccine development and oncolytic applications. VSV's interaction with host cells through the low-density lipoprotein receptor (LDL-R) and its sophisticated transcriptional regulation mechanisms enables precise control over therapeutic applications.

View Article and Find Full Text PDF

In this study, we aimed to evaluate the potential effects of white tea (WT) in the atherosclerosis process characterized by oxidative stress, inflammation, and dyslipidemia. In our study, apolipoprotein E knockout (ApoE) mice (RRID: IMSR_JAX:002052) and C57BL/6J mice (RRID: IMSR_JAX:000664) were used. In the atherosclerosis model induced by an atherogenic diet (AD), WT was administered via oral gavage at two different concentrations.

View Article and Find Full Text PDF

PCSK9 Inhibitors: Focus on Evolocumab and Its Impact on Atherosclerosis Progression.

Pharmaceuticals (Basel)

November 2024

Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.

This paper investigates the therapeutic use of PCSK9 inhibitors, particularly Evolocumab, as monoclonal antibodies for the treatment of atherosclerosis based on recent literature reviews. PCSK9 is an outstanding example of a breakthrough in medical science, with advancements in understanding its biological function driving substantial progress in atherosclerosis treatment. Atherosclerotic cardiovascular disease (ASCVD) is a leading global cause of mortality, imposing substantial financial burdens on healthcare systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!