Long-Range Antiferromagnetic Ordering in B-Site Ordered Double Perovskite Ca2ScOsO6.

Inorg Chem

Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840, United States.

Published: March 2016

A new Os-based B-site ordered double perovskite with the chemical composition of Ca2ScOsO6 was successfully synthesized. The crystal structure of the title compound was determined by employing the powder X-ray diffraction method and was found to crystallize in the monoclinic P21/n space group with the cell constants of a = 5.4716(1) Å, b = 5.6165(1) Å, c = 7.8168 (1) Å, and β = 89.889 (2)°. The temperature-dependent magnetic susceptibility data suggest that this novel S = (3)/2 compound undergoes an antiferromagnetic transition at ∼ 69 K. Fitting the high-temperature susceptibility data (100-300 K) to Currie-Weisse behavior showed C = 1.734 emu·K/mol (μeff = 3.72 bohr magnetons) and θ = -341 K, which is indicative of dominant antiferromagnetic interactions. Temperature-dependent specific heat measurements exhibit a λ shape anomaly at 69 K, which is consistent with a long-range ordering of the spins. Because of a triangular arrangement of antiferromagnetically ordered magnetic ions, the system exhibits some degree of geometric magnetic frustration (GMF), but not strongly. Spin-dimer analysis, employing extended Hückel theory, reveals that a dominant exchange interaction exists (along the a crystallographic axis in perovskite layer), which violates the perfect condition for GMF.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.5b02630DOI Listing

Publication Analysis

Top Keywords

b-site ordered
8
ordered double
8
double perovskite
8
susceptibility data
8
long-range antiferromagnetic
4
antiferromagnetic ordering
4
ordering b-site
4
perovskite ca2scoso6
4
ca2scoso6 os-based
4
os-based b-site
4

Similar Publications

Orthotopic liver transplant (OLT) represents the standard of care for managing patients affected by end-stage and life-threatening liver diseases. Although a significant improvement in surgical techniques, immunosuppressant regimens, and prompt identification of early post-transplant complications resulted in better clinical outcome and survival in OLT recipients, the occurrence of early bacterial infections still represents a remarkable cause of morbidity and mortality. In this scenario, beta-lactams are the most frequent antimicrobials used in critical OLT recipients.

View Article and Find Full Text PDF
Article Synopsis
  • All-solid-state lithium-ion batteries (ASSLBs) are poised to enhance the performance and safety of next-generation electronics, especially electric vehicles, by utilizing solid electrolytes with high ionic conductivity.
  • Researchers have substituted the B-site of LiLaTiO (LLTO) with Ga to create Ga-doped LLTO solid electrolytes, leading to structural improvements, enhanced ionic conductivity, and better electrochemical stability through a solid-state reaction method.
  • The results show that Ga-doped LLTO exhibits a significantly increased ionic conductivity of 4.15 × 10 S cm in LiLaTiGaO (with 3% Ga), making it a promising candidate for future ASSLB applications due to its stable operating voltage range.
View Article and Find Full Text PDF

Structural, dielectric and magnetic properties of Sb/Cr-doped CaCu3Ti4O12 quadruple perovskite oxides.

J Phys Condens Matter

January 2025

Nanjing University, Hankou Road 22, School of Physics, Nanjing University, Nanjing, Jiangsu, 210093, CHINA.

Driven by the miniaturization of microelectronic devices and their multifunctionalities, the development of new quadruple-perovskite oxides with high dielectric constants and high Curie temperature are highly required. Herein, we report on the structural, dielectric and magnetic properties of Sb/Cr-doped CaCu3Ti4O12 (CCTO) quadruple perovskite oxides, CaCu3Ti3.9Sb0.

View Article and Find Full Text PDF

Large Manipulation of Ferrimagnetic Curie Temperature by A-Site Chemical Substitution in ACuFeReO (A = Na, Ca, and La) Half Metals.

Inorg Chem

January 2025

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

CaCuFeReO and LaCuFeReO quadruple perovskite oxides are well known for their high ferrimagnetic Curie temperatures and half-metallic electronic structures. By A-site chemical substitution with lower valence state Na, an isostructural compound NaCuFeReO with both A- and B-site ordered quadruple perovskite structures in -3 symmetry was prepared using high-pressure and high-temperature techniques. The X-ray absorption study demonstrates the valence states to be Cu, Fe, and Re.

View Article and Find Full Text PDF
Article Synopsis
  • * The structural design of LSNMF, with strategically placed NiMn and NiFe, enhances its electronic properties, facilitating better interaction with oxygen, which boosts its catalytic activity.
  • * LSNMF demonstrates impressive performance metrics, including a high current density for both ORR and OER, making it a leading candidate for real-world applications in energy conversion technologies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!