Although plant growth is generally recognized to be influenced by allocation to defense, genetic background (e.g., inbreeding), and gender, rarely have those factors been addressed collectively. In quaking aspen (Populus tremuloides Michx.), phenolic glycosides (PGs) and condensed tannins (CTs) constitute up to 30 % of leaf dry weight. To quantify the allocation cost of this chemical defense, we measured growth, defense chemistry, and individual heterozygosity (H obs at 16 microsatellite loci) for male and female trees in both controlled and natural environments. The controlled environment consisted of 12 juvenile genets grown for 3 years in a common garden, with replication. The natural environment consisted of 51 mature genets in wild populations, from which we sampled multiple ramets (trees) per genet. Concentrations of PGs and CTs were negatively correlated. PGs were uncorrelated with growth, but CT production represented a major cost. Across the range of CT levels found in wild-grown trees, growth rates varied by 2.6-fold, such that a 10 % increase in CT concentration occurred with a 38.5 % decrease in growth. H obs had a marked effect on aspen growth: for wild trees, a 10 % increase in H obs corresponded to a 12.5 % increase in growth. In wild trees, this CT effect was significant only in females, in which reproduction seems to exacerbate the cost of defense, while the H obs effect was significant only in males. Despite the lower growth rate of low-H obs trees, their higher CT levels may improve survival, which could account for the deficit of heterozygotes repeatedly found in natural aspen populations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00442-016-3577-6DOI Listing

Publication Analysis

Top Keywords

quaking aspen
8
growth
8
environment consisted
8
10 % increase
8
growth wild
8
wild trees
8
trees
6
obs
5
heterozygosity gender
4
gender growth-defense
4

Similar Publications

Understanding how mutations arise and spread through individuals and populations is fundamental to evolutionary biology. Most organisms have a life cycle with unicellular bottlenecks during reproduction. However, some organisms like plants, fungi, or colonial animals can grow indefinitely, changing the manner in which mutations spread throughout both the individual and the population.

View Article and Find Full Text PDF

Why are triploid quaking aspen (Populus tremuloides) common?

Am J Bot

August 2024

Department of Environmental Science, Policy, and Management, University of California at Berkeley, Berkeley, 94720 USA, CA.

Premise: Quaking aspen is a clonal tree species that has mixed ploidy, often with high relative abundance of both diploids and triploids but no haploids or tetraploids. Triploids typically have low fertility, leaving their occurrence apparently unlikely from an evolutionary perspective, unless they provide a "triploid bridge" to generating higher-fitness tetraploids-which are not observed in this species. This study focused on how triploidy can be maintained in quaking aspen.

View Article and Find Full Text PDF

The American bison () is a species that strongly interacts with its environment, yet the effects of this large herbivore on quaking aspen () have received little study. We documented bison breaking the stems of aspen saplings (young aspen >2 m tall and ≤5 cm in diameter at breast height) and examined the extent of this effect in northern Yellowstone National Park (YNP). Low densities of Rocky Mountain elk () after about 2004 created conditions conducive for new aspen recruitment in YNP's northern ungulate winter range (northern range).

View Article and Find Full Text PDF

Intraspecific variation in functional traits may mediate tree species' drought resistance, yet whether trait variation is due to genotype (G), environment (E), or G×E interactions remains unknown. Understanding the drivers of intraspecific trait variation and whether variation mediates drought response can improve predictions of species' response to future drought. Using populations of quaking aspen spanning a climate gradient, we investigated intraspecific variation in functional traits in the field as well as the influence of G and E among propagules in a common garden.

View Article and Find Full Text PDF

Disturbances are ubiquitous in ecological systems, and species have evolved a range of strategies to resist or rebound following disturbance. Understanding how the presence and complementarity of regeneration traits will affect community responses to disturbance is increasingly urgent as disturbance regimes shift beyond their historical ranges of variability. We define "disturbance niche" as a species' fitness across a range of disturbance sizes and frequencies that can reflect the fundamental or realized niche, that is, whether the species occurs alone or with other species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!