This work investigates the structure-activity properties of CuOx-decorated CeO2 nanocubes with a meticulous scrutiny on the role of the CuOx/CeO2 nanointerface in the catalytic oxidation of diesel soot, a critical environmental problem all over the world. For this, a systematic characterization of the materials has been undertaken using transmission electron microscopy (TEM), transmission electron microscopy-energy-dispersive X-ray spectroscopy (TEM-EDS), high-angle annular dark-field-scanning transmission electron microscopy (HAADF-STEM), scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS), X-ray diffraction (XRD), Raman, N2 adsorption-desorption, and X-ray photoelectron spectroscopy (XPS) techniques. The TEM images show the formation of nanosized CeO2 cubes (∼25 nm) and CuOx nanoparticles (∼8.5 nm). The TEM-EDS elemental mapping images reveal the uniform decoration of CuOx nanoparticles on CeO2 nanocubes. The XPS and Raman studies show that the decoration of CuOx on CeO2 nanocubes leads to improved structural defects, such as higher concentrations of Ce(3+) ions and abundant oxygen vacancies. It was found that CuOx-decorated CeO2 nanocubes efficiently catalyze soot oxidation at a much lower temperature (T50 = 646 K, temperature at which 50% soot conversion is achieved) compared to that of pristine CeO2 nanocubes (T50 = 725 K) under tight contact conditions. Similarly, a huge 91 K difference in the T50 values of CuOx/CeO2 (T50 = 744 K) and pristine CeO2 (T50 = 835 K) was found in the loose-contact soot oxidation studies. The superior catalytic performance of CuOx-decorated CeO2 nanocubes is mainly attributed to the improved redox efficiency of CeO2 at the nanointerface sites of CuOx-CeO2, as evidenced by Ce M5,4 EELS analysis, supported by XRD, Raman, and XPS studies, a clear proof for the role of nanointerfaces in the performance of heterostructured nanocatalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.5b04590DOI Listing

Publication Analysis

Top Keywords

ceo2 nanocubes
28
transmission electron
16
soot oxidation
12
cuox-decorated ceo2
12
ceo2
10
nanointerface catalytic
8
catalytic performance
8
performance heterostructured
8
electron microscopy
8
xrd raman
8

Similar Publications

An electrochemiluminescence sensor for ultrasensitive determination of tyrosine based on ceria nanomaterial as a novel luminophor.

Anal Chim Acta

January 2025

Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070 Gansu, P.R. China. Electronic address:

Backgroud: Recently, optical nanomaterials have attracted much attention in the field of electrochemiluminescence (ECL). Nanostructured ceria possessed unique optical properties, and it's always used for constructing ECL sensor as catalyst for improving sensing performance, while the ECL property of ceria is rarely studied. In fact, it could be the potential candidate for applying in ECL sensors based on size and shape dependency optical property caused by the quantum scale effects.

View Article and Find Full Text PDF

Direct electrochemical N oxidation to nitrate on supportive Pt/CeO.

Chem Commun (Camb)

December 2024

Shandong Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China.

Here, we present the development of an efficient Pt/CeO catalyst for electrocatalytic N oxidation to nitrate. Characterization results indicate that highly dispersed Pt and oxygen vacancies from CeO nanocubes (NCs) exhibit strong interactions, which promote the N adsorption on the catalyst surface and suppress the competitive OER activity on oxygen vacancies, resulting in significantly enhanced e-NOR performance.

View Article and Find Full Text PDF

Spatial-resolved and self-calibrated 3D-printed photoelectrochemical biosensor engineered by multifunctional CeO/CdS heterostructure for immunoassay.

Biosens Bioelectron

October 2024

College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266000, PR China. Electronic address:

A spatial-resolved and self-calibrated photoelectrochemical (PEC) biosensor has been fabricated by a multifunctional CeO/CdS heterostructure, achieving portable and sensitive detection of carcinoembryonic antigen (CEA) using a homemade 3D printing device. The CeO/CdS heterostructure with matched band structure is prepared to construct the dual-photoelectrodes to improve the PEC response of CeO. In particular, as the photoactive nanomaterial, the CeO also plays the role of peroxidase mimetic nanozymes.

View Article and Find Full Text PDF

Edge-Rich Pt-O-Ce Sites in CeO Supported Patchy Atomic-Layer Pt Enable a Non-CO Pathway for Efficient Methanol Oxidation.

Angew Chem Int Ed Engl

October 2024

School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China.

Rational design of efficient methanol oxidation reaction (MOR) catalyst that undergo non-CO pathway is essential to resolve the long-standing poisoning issue. However, it remains a huge challenge due to the rather difficulty in maximizing the non-CO pathway by the selective coupling between the key *CHO and *OH intermediates. Here, we report a high-performance electrocatalyst of patchy atomic-layer Pt epitaxial growth on CeO nanocube (Pt ALs/CeO) with maximum electronic metal-support interaction for enhancing the coupling selectively.

View Article and Find Full Text PDF

Comparative study on CeO catalysts with different morphologies and exposed facets for catalytic ozonation: performance, key factor and mechanism insight.

J Colloid Interface Sci

November 2024

Particle Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China; Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China. Electronic address:

Morphology and facet effects of metal oxides in heterogeneous catalytic ozonation (HCO) are attracting increasing interests. In this paper, the different HCO performances for degradation and mineralization of phenol of seven ceria (CeO) catalysts, including four with different morphologies (nanorod, nanocube, nanooctahedron and nanopolyhedron) and three with the same nanorod morphology but different exposed facets, are comparatively studied. CeO nanorods with (110) and (100) facets exposed show the best performance, much better than that of single ozonation, while CeO nanocubes and nanooctahedra show performances close to single ozonation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!