Change in sagittal spinal curvature from the neutral upright stance is an important measure of the heaviness and correctness of backpack use. As current recommendations, with respect to spinal profile, of backpack load thresholds were based on the significant curvature change in individual spinal region only, this study investigated the most critical backpack load by assessing simultaneously the spinal curvature changes along the whole spine. A motion analysis system was used to measure the curvature changes in cervical, upper thoracic, lower thoracic and lumbar regions with backpack load at 0, 5, 10, 15 and 20% of body weight. A multi-objective goal programming model was adopted to determine the global critical load of maximum curvature change of the whole spine in accordance with the maximum curvature changes of the four spinal regions. Results suggested that the most critical backpack load was 13% of body weight for healthy male college students. Practitioner Summary: As current recommendations of backpack load thresholds were based on the significant curvature change in individual spinal region only, this study investigated the backpack load by considering simultaneously the spinal curvature changes along the whole spine. The recommendation, in terms of the global critical load, was 13% of body weight for healthy male college students.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00140139.2016.1151947DOI Listing

Publication Analysis

Top Keywords

backpack load
24
curvature changes
16
spinal curvature
12
curvature change
12
body weight
12
spinal
8
backpack
8
curvature
8
current recommendations
8
load
8

Similar Publications

Influence of prosthetic foot selection on walking performance during various load carriage conditions.

Clin Biomech (Bristol)

January 2025

Department of Veterans Affairs, Center for Limb Loss and MoBility, Seattle, WA, USA; Department of Mechanical Engineering, University of Washington, Seattle, WA, USA. Electronic address:

Background: Ambulatory individuals with lower limb amputations often face challenges with body support, body propulsion, and balance control. Carrying an infant, toddler, backpack, or other load can exacerbate these challenges and highlights the importance of prescribing the most suitable prosthetic foot. The aim of this study was to examine the influence of five different prosthetic feet on walking performance during various load carriage conditions.

View Article and Find Full Text PDF

Impact of backpack load during walking: an EMG and biomechanical analysis.

Med Biol Eng Comput

January 2025

Biomedical Engineering, Bahçeşehir University, Çırağan Caddesi Osmanpaşa Mektebi Sokak No: 4-6 Beşiktaş, İstanbul, 34353, Turkey.

This study aims to understand the impact of backpack carriage, a regular activity for many, on back muscles and joint mobility during walking so that clinicians can develop strategies or products to ensure individuals' safety and well-being. Surface electromyography (EMG) and XSENS Awinda motion capture systems were used to analyze the effects of carrying a backpack (12% of body weight) on erector spinae and multifidus muscles, as well as spinal, hip, knee, and ankle joints. Subjects walked at 4 km/h on flat and inclined surfaces.

View Article and Find Full Text PDF

Objective: Suspended loads have been shown to improve loaded-walking economy. Establishing a biped walking model with dynamic trunk pitch angles can provide more comprehensive estimates of the human biomechanical response under suspended loads.

Methods: We developed the trunk-load- hip dynamics, modified the spring-loaded-inverted-pendulum (SLIP) model, and optimized the loaded-walking pattern for minimal energetic cost.

View Article and Find Full Text PDF

Walking with heavy loads is a common task in military affairs and daily life. Considering that the shoulder and leg muscles fatigue will be caused during walking, which will affect the walking endurance and physical health. However, the suspended backpack is found to improve the energy efficiency of walking with a load.

View Article and Find Full Text PDF

To enhance the prevention of shoulder pressure injuries in various load-bearing populations, the effects of shoulder morphology on pressure distribution were investigated. In this study, 69 participants underwent three-dimensional scanning, and based on shoulder morphological characteristic indicators, they were classified into four shoulder types. From these, 28 participants were selected to have the pressure within shoulder regions measured using a pressure-sensing vest while carrying a backpack load equivalent to 15% of their body weight.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!