TEF3-1 (transcriptional enhancer factor 3 isoform 1), also known as TEAD4 (TEA domain family member 4), was recently revealed as an oncogenic character in cancer development. However, the underlying molecular pathogenic mechanisms remain undefined. In this paper, we investigated nuclear TEF3-1 could promote G1/S transition in HUVECs, and the expression levels of cyclins and CDKs were upregulated. Additionally, if TEF3-1 was knocked down, the expression of cyclins and CDKs was downregulated while the expression of P21, a negative regulator of the cell cycle, was upregulated. A microarray analysis also confirmed that TEF3-1 overexpression upregulates genes that are related to cell cycle progression and the promotion of angiogenesis. Moreover, we observed that nuclear TEF3-1 was highly expressed during the formation of vascular structures in gastric cancer (GC). Finally, tumor xenograft experiments indicated that, when TEF3-1 was knocked down, tumor growth and angiogenesis were also suppressed. Taken together, these results demonstrate for the first time that TEF3-1 localization to the nucleus stimulates the cell cycle progression in HUVECs and specifically contributes to tumor angiogenesis. Nuclear TEF3-1 in HUVECs may serve as an oncogenic biomarker, and the suppression of TEF3-1 may be a potential target in anti-tumor therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4924681 | PMC |
http://dx.doi.org/10.18632/oncotarget.7342 | DOI Listing |
Cardiooncology
January 2025
Department of Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
Background: Dexrazoxane has been studied for its ability to prevent anthracycline-induced cardiac dysfunction (AICD) in several trials but its use in clinical practice remains limited. This is related to the low to moderate quality of the generated evidence, safety concerns and restricted prescribing indications. Additional randomized trials are needed before this drug can be routinely integrated into cardio-oncology clinical practice.
View Article and Find Full Text PDFNat Rev Drug Discov
January 2025
Division of Medicine, University College London, London, UK.
Immunity declines with age. This results in a higher risk of age-related diseases, diminished ability to respond to new infections and reduced response to vaccines. The causes of this immune dysfunction are cellular senescence, which occurs in both lymphoid and non-lymphoid tissue, and chronic, low-grade inflammation known as 'inflammageing'.
View Article and Find Full Text PDFCommun Biol
January 2025
Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014, Paris, France.
The H3K79 methyltransferase DOT1L is essential for multiple aspects of mammalian development where it has been shown to regulate gene expression. Here, by producing and integrating epigenomic and spike-in RNA-seq data, we decipher the molecular role of DOT1L during mouse spermatogenesis and show that it has opposite effects on gene expression depending on chromatin environment. On one hand, DOT1L represses autosomal genes that are devoid of H3K79me2 at their bodies and located in H3K27me3-rich/H3K27ac-poor environments.
View Article and Find Full Text PDFImmunology
January 2025
Department of Clinical Immunology, Jawaharlal Institute of Post-Graduate Medical Education and Research (JIPMER), Puducherry, India.
Mechanisms contributing to non-response to treatment in lupus nephritis (LN) are unclear. We characterised the transcriptome of paired peripheral blood mononuclear cells (PBMCs) and renal tissues in LN before and after cyclophosphamide (CYC) treatment and identified markers that predicted treatment response. Total RNA isolated from paired PBMCs (n = 32) and renal tissues (n = 25) of 16 proliferative LN before CYC treatment, 6 months post-treatment, and during renal flare, was sequenced on Illumina Novaseq-6000 platform.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Rapa Therapeutics, Rockville, Maryland, USA.
Background: Polyclonal autologous T cells that are epigenetically reprogrammed through mTOR inhibition and IFN-α polarization (RAPA-201) represent a novel approach to the adoptive T cell therapy of cancer. Ex vivo inhibition of mTOR results causes a shift towards T central memory (T) whereas ex vivo IFN-α promotes type I cytokines, with each of these functions known to enhance the adoptive T cell therapy of cancer. Rapamycin-resistant T cells polarized for a type II cytokine phenotype were previously evaluated in the allogeneic transplantation context.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!