This paper presents a Geographical Information System (GIS) based probabilistic simulation framework to estimate PM2.5 population exposure in New Delhi, India. The framework integrates PM2.5 output from spatiotemporal LUR models and trip distribution data using a Gravity model based on zonal data for population, employment and enrollment in educational institutions. Time-activity patterns were derived from a survey of randomly sampled individuals (n = 1012) and in-vehicle exposure was estimated using microenvironmental monitoring data based on field measurements. We simulated population exposure for three different scenarios to capture stay-at-home populations (Scenario 1), working population exposed to near-road concentrations during commutes (Scenario 2), and the working population exposed to on-road concentrations during commutes (Scenario 3). Simulated annual average levels of PM2.5 exposure across the entire city were very high, and particularly severe in the winter months: ∼200 μg m(-3) in November, roughly four times higher compared to the lower levels in the monsoon season. Mean annual exposures ranged from 109 μg m(-3) (IQR: 97-120 μg m(-3)) for Scenario 1, to 121 μg m(-3) (IQR: 110-131 μg m(-3)), and 125 μg m(-3) (IQR: 114-136 μ gm(-3)) for Scenarios 2 and 3 respectively. Ignoring the effects of mobility causes the average annual PM2.5 population exposure to be underestimated by only 11%.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.5b04975DOI Listing

Publication Analysis

Top Keywords

μg m-3
24
population exposure
16
pm25 population
12
m-3 iqr
12
exposure delhi
8
probabilistic simulation
8
simulation framework
8
scenario working
8
working population
8
population exposed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!