Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In order to develop pharmacokinetic model, a well-known multilayer feed-forward algorithm back-propagation artificial neural networks (BP-ANN) was applied to the pharmacokinetics of losartan in rabbit. The plasma concentrations of losartan in twelve rabbits, which were divided into two groups and given losartan 2 mg/kg by intravenous (Iv) and intragastrical (Ig) administration, were determined by LC-MS. The BP-ANN model included one input layer, hidden layers, and one output layer was constructed and compared with curve estimation based on the time-concentration data of losartan. The results showed the BP-ANN model had high goodness of fit index and good coherence (R > 0.99) between forecasted concentration and measured concentration both in Iv and Ig administration. The residuals of each concentrations generated by BP-ANN model were all smaller than Curve estimation. The pharmacokinetic result showed there was no significant difference between measured and simulated pharmacokinetic parameters including AUC(0-t), AUC(0-∞), MRT(0-t), MRT(0-∞), T1/2 V and Cmax (P > 0.05). In conclusion, the BP-ANN model has remarkably accurate predictions ability, which better than Curve estimation, and can be used as a utility tool in pharmacokinetic experiment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4729999 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!