Objectives: Bone remodeling occurs during orthodontic treatment; this process enables tooth movement. Many factors can affect bone remodeling at the cellular level, such as nutritional supplements that can affect tooth movement. The present study was designed to evaluate the effect of dietary vitamin C on orthodontic tooth movement in rats.

Materials And Methods: This study was carried out on 36 six-week male Wistar rats with a mean weight of 225±32 g, which were randomly allocated to two equal groups. Rats in the case group received 1wt% vitamin C in their daily water. Opening springs were placed on the incisor teeth of both case and control groups. After 17 days, rats were sacrificed; the distance between the mesio-incisal angles of these teeth was measured with a digital caliper. Histological sections were made containing incisor teeth and alveolar bone and stained by hematoxylin-eosin. The number of resorption lacunae was evaluated using light microscopy.

Results: Our findings showed that the amount of tooth movement in the vitamin C group was significantly higher than that in the control group (P<0.001). The osteoclast counts were significantly higher in vitamin C group (P=0.036).

Conclusion: Oral vitamin C can increase orthodontic tooth movement in rats with more osteoclast lacunae around root in the pressure area.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4754566PMC

Publication Analysis

Top Keywords

tooth movement
20
dietary vitamin
8
vitamin orthodontic
8
orthodontic tooth
8
bone remodeling
8
incisor teeth
8
tooth
5
movement
5
rats
4
movement rats
4

Similar Publications

Background: The collum angle, tooth dimensions, root length, and alveolar bone thickness have a significant impact on orthodontic diagnosis and treatment planning. The boundaries of orthodontic tooth movement are determined by alveolar bone thickness and dimensions while the collum angle determines the appropriate positioning of the root relative to the cortical plate. This study aimed to compare the collum angle, crown dimensions, root length, and alveolar bone thickness of the upper and lower incisors, canines, and premolars in subjects with varying anteroposterior relationships.

View Article and Find Full Text PDF

Endo 180 participates in collagen remodeling of the periodontal ligament during orthodontic tooth movement.

BMC Oral Health

December 2024

Department of Orthodontics, Central Laboratory, Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Peking University School, 22th Zhongguancun South Ave, Beijing, 100081, China.

Background: Orthodontic tooth movement (OTM) relies on the remodeling of periodontal tissues, including the periodontal ligament (PDL) and alveolar bone. Collagen remodeling plays a crucial role during this process, allowing for the necessary changes in the PDL's structure and function. Endo180, an urokinase plasminogen activator receptor-associated protein, is a transmembrane receptor regulated collagen remodeling.

View Article and Find Full Text PDF

Inflammation and mechanical force-induced bone remodeling.

Periodontol 2000

December 2024

Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Periodontitis arises from imbalanced host-microbe interactions, leading to dysbiosis and destructive inflammation. The host's innate and adaptive immune responses produce pro-inflammatory mediators that stimulate destructive events, which cause loss of alveolar bone and connective tissue attachment. There is no consensus on the factors that lead to a conversion from gingivitis to periodontitis, but one possibility is the proximity of the inflammation to the bone, which promotes bone resorption and inhibits subsequent bone formation during coupled bone formation.

View Article and Find Full Text PDF

Impact of periodontal microRNAs associated with alveolar bone remodeling during orthodontic tooth movement: a randomized clinical trial.

J Transl Med

December 2024

Department of General Surgery and Surgical-Medical Specialties, Unit of Periodontology, School of Dentistry, University of Catania, Via S. Sofia 78, Catania, Catania, 95123, Italy.

Background: Micro-RNAs (miRNAs) have been reported to play an important role during orthodontic tooth movement (OTM) through the regulation of periodontal soft and hard tissue homeostasis and functions. The aim of the present study was to assess the effects of miRNAs on OTM and to evaluate possible predictors that influenced the overall OTM amount at a 3-month follow-up.

Methods: Through a split-mouth design, 21 healthy patients (mean age 13.

View Article and Find Full Text PDF

Objectives: To investigate maxillary canine movement accuracy and anchorage during space closure in first premolar extraction cases (maximum anchorage) using In-House Clear Aligners (IHCAs).

Materials And Methods: A randomised controlled trial with a split-mouth design recruited 16 adults in university setting. Each patient was randomly assigned by side for canine retraction using 12 IHCAs to both the experimental palatal power arm (Pa) and non-Pa control (C).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!