Suppression of Chloroplastic Alkenal/One Oxidoreductase Represses the Carbon Catabolic Pathway in Arabidopsis Leaves during Night.

Plant Physiol

Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science (D.T., K.-i.I., K.I.I., P.P., H.I., K.S., R.S., C.M.), and Center for Support to Research and Education Activities (P.P.), Kobe University, Nada, Kobe 657-8501, Japan;Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (K.I.); andFaculty of Agriculture, Kinki University, Nakamachi, Nara 631-8505, Japan (M.T.)

Published: April 2016

Lipid-derived reactive carbonyl species (RCS) possess electrophilic moieties and cause oxidative stress by reacting with cellular components. Arabidopsis (Arabidopsis thaliana) has a chloroplast-localized alkenal/one oxidoreductase (AtAOR) for the detoxification of lipid-derived RCS, especially α,β-unsaturated carbonyls. In this study, we aimed to evaluate the physiological importance of AtAOR and analyzed AtAOR (aor) mutants, including a transfer DNA knockout, aor (T-DNA), and RNA interference knockdown, aor (RNAi), lines. We found that both aor mutants showed smaller plant sizes than wild-type plants when they were grown under day/night cycle conditions. To elucidate the cause of the aor mutant phenotype, we analyzed the photosynthetic rate and the respiration rate by gas-exchange analysis. Subsequently, we found that both wild-type and aor (RNAi) plants showed similar CO2 assimilation rates; however, the respiration rate was lower in aor (RNAi) than in wild-type plants. Furthermore, we revealed that phosphoenolpyruvate carboxylase activity decreased and starch degradation during the night was suppressed in aor (RNAi). In contrast, the phenotype of aor (RNAi) was rescued when aor (RNAi) plants were grown under constant light conditions. These results indicate that the smaller plant sizes observed in aor mutants grown under day/night cycle conditions were attributable to the decrease in carbon utilization during the night. Here, we propose that the detoxification of lipid-derived RCS by AtAOR in chloroplasts contributes to the protection of dark respiration and supports plant growth during the night.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4825146PMC
http://dx.doi.org/10.1104/pp.15.01572DOI Listing

Publication Analysis

Top Keywords

aor rnai
24
aor mutants
12
aor
11
alkenal/one oxidoreductase
8
detoxification lipid-derived
8
lipid-derived rcs
8
smaller plant
8
plant sizes
8
wild-type plants
8
plants grown
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!