How structural adaptability exists alongside HLA-A2 bias in the human αβ TCR repertoire.

Proc Natl Acad Sci U S A

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556;

Published: March 2016

How T-cell receptors (TCRs) can be intrinsically biased toward MHC proteins while simultaneously display the structural adaptability required to engage diverse ligands remains a controversial puzzle. We addressed this by examining αβ TCR sequences and structures for evidence of physicochemical compatibility with MHC proteins. We found that human TCRs are enriched in the capacity to engage a polymorphic, positively charged "hot-spot" region that is almost exclusive to the α1-helix of the common human class I MHC protein, HLA-A*0201 (HLA-A2). TCR binding necessitates hot-spot burial, yielding high energetic penalties that must be offset via complementary electrostatic interactions. Enrichment of negative charges in TCR binding loops, particularly the germ-line loops encoded by the TCR Vα and Vβ genes, provides this capacity and is correlated with restricted positioning of TCRs over HLA-A2. Notably, this enrichment is absent from antibody genes. The data suggest a built-in TCR compatibility with HLA-A2 that biases receptors toward, but does not compel, particular binding modes. Our findings provide an instructional example for how structurally pliant MHC biases can be encoded within TCRs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4780628PMC
http://dx.doi.org/10.1073/pnas.1522069113DOI Listing

Publication Analysis

Top Keywords

structural adaptability
8
αβ tcr
8
mhc proteins
8
tcr binding
8
tcr
6
adaptability exists
4
exists alongside
4
hla-a2
4
alongside hla-a2
4
hla-a2 bias
4

Similar Publications

Protein evolution has shaped enzymes that maintain stability and function across diverse thermal environments. While sequence variation, thermal stability and conformational dynamics are known to influence an enzyme's thermal adaptation, how these factors collectively govern stability and function across diverse temperatures remains unresolved. Cytosolic malate dehydrogenase (cMDH), a citric acid cycle enzyme, is an ideal model for studying these mechanisms due to its temperature-sensitive flexibility and broad presence in species from diverse thermal environments.

View Article and Find Full Text PDF

Pea plants depend on external structures to reach the strongest light source. To do this, they need to perceive a potential support and to flexibly adapt the movement of their motile organs (e.g.

View Article and Find Full Text PDF

In order to relate nanoparticle properties to function, fast and detailed particle characterization is needed. The ability to characterize nanoparticle samples using optical microscopy techniques has drastically improved over the past few decades; consequently, there are now numerous microscopy methods available for detailed characterization of particles with nanometric size. However, there is currently no "one size fits all" solution to the problem of nanoparticle characterization.

View Article and Find Full Text PDF

Background: Kaposi sarcoma-associated herpesvirus (KSHV), the etiologic agent of Kaposi sarcoma, is human-specific and is thought to have emerged from primate-infecting gammaherpesviruses. KSHV seroprevalence shows geographic variation, being highest in sub-Saharan Africa, intermediate in the Mediterranean area, and low in most other locations. However, KSHV prevalence is also particularly high in specific regions such as the Miyako Islands (Japan).

View Article and Find Full Text PDF

The landscape of artificial intelligence (AI) research is witnessing a transformative shift with the emergence of the Kolmogorov-Arnold network (KAN), presenting a novel architectural paradigm aimed to redefine the structural foundations of AI models, which are based on multilayer perceptron (MLP). Through rigorous experimentation and evaluation, we introduce the KAN-electroencephalogram (EEG) model, a tailored design for efficient seizure detection. Our proposed network is tested and successfully generalized on three different datasets, one from the USA, one from Europe, and one from Oceania, recorded with different front-end hardware.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!