The Lactamase Engineering Database (www.LacED.uni-stuttgart.de) was developed to facilitate the classification and analysis of TEM β-lactamases. The current version contains 474 TEM variants. Two hundred fifty-nine variants form a large scale-free network of highly connected point mutants. The network was divided into three subnetworks which were enriched by single phenotypes: one network with predominantly 2be and two networks with 2br phenotypes. Fifteen positions were found to be highly variable, contributing to the majority of the observed variants. Since it is expected that a considerable fraction of the theoretical sequence space is functional, the currently sequenced 474 variants represent only the tip of the iceberg of functional TEM β-lactamase variants which form a huge natural reservoir of highly interconnected variants. Almost 50% of the variants are part of a quartet. Thus, two single mutations that result in functional enzymes can be combined into a functional protein. Most of these quartets consist of the same phenotype, or the mutations are additive with respect to the phenotype. By predicting quartets from triplets, 3,916 unknown variants were constructed. Eighty-seven variants complement multiple quartets and therefore have a high probability of being functional. The construction of a TEM β-lactamase network and subsequent analyses by clustering and quartet prediction are valuable tools to gain new insights into the viable sequence space of TEM β-lactamases and to predict their phenotype. The highly connected sequence space of TEM β-lactamases is ideally suited to network analysis and demonstrates the strengths of network analysis over tree reconstruction methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4862526 | PMC |
http://dx.doi.org/10.1128/AAC.02930-15 | DOI Listing |
J Phys Chem B
January 2025
Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
The microbial aminotransferase enzyme DapC is vital for lysine biosynthesis in various Gram-positive bacteria, including . Characterization of the enzyme's conformational dynamics and identifying the key residues for ligand binding are crucial for the development of effective antimicrobials. This study employs atomistic simulations to explore and categorize the dynamics of DapC in comparison to other classes of aminotransferase.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
August 2024
Compressed ultrafast photography (CUP) is a high-speed imaging technique with a frame rate of up to ten trillion frames per second (fps) and a sequence depth of hundreds of frames. This technique is a powerful tool for investigating ultrafast processes. However, since the reconstruction process is an ill-posed problem, the image reconstruction will be more difficult with the increase of the number of reconstruction frames and the number of pixels of each reconstruction frame.
View Article and Find Full Text PDFInt J Gen Med
January 2025
School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, People's Republic of China.
Purpose: Conventional brain MRI protocols are time-consuming, which can lead to patient discomfort and inefficiency in clinical settings. This study aims to assess the feasibility of using artificial intelligence-assisted compressed sensing (ACS) to reduce brain MRI scan time while maintaining image quality and diagnostic accuracy compared to a conventional imaging protocol.
Patients And Methods: Seventy patients from the department of neurology underwent brain MRI scans using both conventional and ACS protocols, including axial and sagittal T2-weighted fast spin-echo sequences and T2-fluid attenuated inversion recovery (FLAIR) sequence.
Innovation (Camb)
January 2025
AIM Center, College of Life Sciences and Technology, Beijing University of Chemical Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
Predicting free energy changes (ΔΔG) is essential for enhancing our understanding of protein evolution and plays a pivotal role in protein engineering and pharmaceutical development. While traditional methods offer valuable insights, they are often constrained by computational speed and reliance on biased training datasets. These constraints become particularly evident when aiming for accurate ΔΔG predictions across a diverse array of protein sequences.
View Article and Find Full Text PDFBMC Microbiol
January 2025
School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
Antimicrobial resistance (AMR) in soil is an ancient phenomenon with widespread spatial presence in terrestrial ecosystems. However, the natural processes shaping the temporal dissemination of AMR in soils are not well understood. We aimed to determine whether, how, and why AMR varies with soil age in recently deglaciated pioneer and developing Arctic soils using a space-for-time approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!