Certain arsenic and selenium compounds show a remarkable mutual cancelation of toxicities, where a lethal dose of one can be voided by an equimolar and otherwise lethal dose of the other. It is now well established that the molecular basis of this antagonism is the formation and biliary excretion of seleno bis-(S-glutathionyl) arsinium anion [(GS)2AsSe](-). Previous work has definitively demonstrated the presence of [(GS)2AsSe](-) in rabbit bile, but only in the presence of other arsenic and selenium species. Rabbits have a gall bladder, which concentrates bile and lowers its pH; it seems likely that this may be responsible for the breakdown of biliary [(GS)2AsSe](-). Since rats have no gall bladder, the bile proceeds directly through the bile duct from the hepatobiliary tree. In the present work we have shown that the primary product of biliary co-excretion of arsenic and selenium in rats is [(GS)2AsSe](-), with essentially 100% of the arsenic and selenium present as this species. The chemical plausibility of the X-ray absorption spectroscopy-derived structural conclusions of this novel arsenic and selenium co-excretion product is supported by density functional theory calculations. These results establish the biomolecular basis to further explore the use of selenium dietary supplements as a possible palliative for chronic low-level arsenic poisoning of human populations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinorgbio.2016.01.022 | DOI Listing |
Mar Pollut Bull
January 2025
ICAR-National Institute of Abiotic Stress Management, Baramati, Pune-413115, India.
Contaminants are a major cause of seafood export rejections in foreign markets and have significantly impacted consumer health. This investigation addresses the issues of metal contamination and biochemical markers in Litopenaeus vannamei from East Midnapore, West Bengal, India. The analyzed metals included vanadium (V), chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), molybdenum (Mo), silver (Ag), gallium (Ga), germanium (Ge), arsenic (As), selenium (Se), strontium (Sr), tin (Sn), cadmium (Cd), mercury (Hg), and lead (Pb), using Inductively Coupled Plasma Mass Spectrometry (ICP-MS).
View Article and Find Full Text PDFiScience
January 2025
School of Geographical Sciences, University of Bristol, Bristol, UK.
Novel sustainable agricultural strategies that enhance soil nutrients and human nutrition are crucial for meeting global food production needs. Here, we evaluate the potential of "glacial flour," a naturally crushed rock produced by glaciers known to be rich in nutrients (P, K, and micronutrients) needed for plant growth. Our proof-of-concept study, investigated soybean ( var.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Department of Botany, Cotton University, Guwahati, 781001, Assam, India. Electronic address:
Selenium nanoparticles are well known for their antioxidant and stress-mitigating properties. In our study, composite nanoformulations of selenium and chitosan have been synthesized. The synthesized composite nanoformulations were 50 nm in diameter, spherical in shape, and had higher antioxidant activities and stability than the selenium and chitosan nanoparticles.
View Article and Find Full Text PDFBiol Trace Elem Res
January 2025
Clinical Research Centre, University Medical Centre Ljubljana, Zaloška Cesta 2, 1000, Ljubljana, Slovenia.
Premature ovarian insufficiency (POI) is poorly understood, with causes identified in only 25% of cases. Emerging evidence suggests links between trace elements (TEs) and POI. This study is the first to compare concentrations of manganese (Mn), copper (Cu), zinc (Zn), selenium (Se), molybdenum (Mo), arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) across urine, serum, and whole blood in women with POI compared to healthy controls (HC), aiming to explore their distribution and potential associations with POI.
View Article and Find Full Text PDFArch Toxicol
January 2025
Department of Biomedicine and Environmental Research, Faculty of Medicine, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Konstantynów Ave. 1J, 20-708, Lublin, Poland.
Cadmium (Cd) and inorganic arsenic (As) compounds are considered to be among the major public health hazards. This is due to both the high intrinsic toxicity of these substances and the often difficult to avoid exposure of the general population through contaminated water and food. One proposed method to reduce the toxic effects of As and Cd on animals and humans is the use of selenium (Se).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!