Plant pathogens employ various secreted proteins to suppress host immunity for their successful host colonization. Identification and characterization of pathogen-secreted proteins can contribute to an understanding of the pathogenicity mechanism and help in disease control. We used proteomics to search for proteins secreted to xylem by the vascular pathogen Verticillium nonalfalfae during colonization of hop plants. Three highly abundant fungal proteins were identified: two enzymes, α-N-arabinofuranosidase (VnaAbf4.216) and peroxidase (VnaPRX1.1277), and one small secreted hypothetical protein (VnaSSP4.2). These are the first secreted proteins so far identified in xylem sap following infection with Verticillium spp. VnaPRX1.1277, classified as a heme-containing peroxidase from Class II, similar to other Verticillium spp. lignin-degrading peroxidases, and VnaSSP4.2, a 14-kDa cysteine-containing protein with unknown function and with a close homolog in related V. alfalfae strains, were further examined. The in planta expression of VnaPRX1.1277 and VnaSSP4.2 genes increased with the progression of colonization, implicating their role in fungal virulence. Indeed, V. nonalfalfae deletion mutants of both genes exhibited attenuated virulence on hop plants, which returned to the level of the wild-type pathogenicity in the knockout complementation lines, supporting VnaPRX1.1277 and VnaSSP4.2 as virulence factors required to promote V. nonalfalfae colonization of hop plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/MPMI-01-16-0016-R | DOI Listing |
Int J Mol Sci
December 2024
Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
Broad-spectrum crop protection technologies, such as abamectin and bifenthrin, are globally relied upon to curb the existential threats from economic crop pests such as the generalist herbivore Koch (TSSM). However, the rising cost of discovering and registering new acaricides, particularly for specialty crops, along with the increasing risk of pesticide resistance development, underscores the urgent need to preserve the efficacy of currently registered acaricides. This study examined the overall genetic mechanism underlying adaptation to abamectin and bifenthrin in populations from commercial hop fields in the Pacific Northwestern region of the USA.
View Article and Find Full Text PDFFoods
December 2024
Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland.
Hops ( L.) are widely recognized for their use in brewing, but they also possess significant pharmacological properties due to their rich bioactive compounds, with many varieties exhibiting diverse characteristics. This study investigates the chemical composition and biological activities of extracts from six hop varieties, focusing on quantifying xanthohumol and lupulone using High-Performance Liquid Chromatography (HPLC) and Total Phenolic Content (TPC) analysis.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Department of Food Biochemistry and Analysis, Poznan University of Life Sciences, Mazowiecka 48, 60-623 Poznan, Poland.
Xanthohumol (XN) is a phenolic compound found in the largest amount in the flowers of the hop plant, but also in the leaves and possibly in the stalks, which is successfully added to dietary supplements and cosmetics. XN is known as a potent antioxidant compound, which, according to current research, has the potential to prevent and inhibit the development of diseases, i.e.
View Article and Find Full Text PDFPlant Dis
December 2024
National Pingtung University of Science and Technology College of Agriculture, Department of Plant Medicine, Pingtung, Taiwan;
Luffa (Luffa cylindrica (L.) M. Roem.
View Article and Find Full Text PDFPlant Dis
December 2024
Department of Plant Protection, Biotechnical Faculty, University of Montenegro, 81000 Podgorica, Montenegro.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!