Type 2 diabetes (T2D) constituted 90% of the global 387 million diabetes cases in 2014. The enzyme protein-tyrosine phosphatase 1B (PTP1B) has been recognized as a therapeutic target for treatment of T2D and its adverse complications. With the aim of accelerating the investigation of complex natural sources, such as crude plant extracts, for potential PTP1B inhibitors, we have developed a bio-analytical platform combining high-resolution PTP1B inhibition profiling and high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy, i.e., HR-bioassay/HPLC-HRMS-SPE-NMR. Human recombinant PTP1B enzyme was used for the microplate-based PTP1B inhibition assay, which was optimized for pH and substrate concentration to be compatible with rate measurements within the 10 min incubation time. Subsequently, analytical-scale HPLC-based microfractionation followed by colorimetric microplate-based PTP1B bioassaying enabled construction of a high-resolution inhibition profile corresponding to the HPLC profile. The high-resolution PTP1B inhibition profiling was validated using an artificial mixture of known PTP1B inhibitors and non-inhibiting compounds as negative controls. Finally, a proof-of-concept study with a real sample was performed using crude ethyl acetate extract of the phytochemically hitherto unexplored plant Eremophila lucida. This led to the identification of the first viscidane type diterpene, i.e., 5-hydroxyviscida-3,14-dien-20-oic acid (9) as PTP1B inhibitor with an IC50 value of 42.0 ± 5.9 μM. In addition, a series of flavonoids, i.e., luteolin (1), dinatin (3a), tricin (3b), 3,6-dimethoxyapigenin (4), jaceidin (5), and cirsimaritin (6) as well as a cembrene diterpene, (3Z, 7E, 11Z)-15-hydroxycembra-3,7,11-trien-19-oic acid (8), were also identified for the first time from E. lucida.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fitote.2016.02.008DOI Listing

Publication Analysis

Top Keywords

ptp1b inhibition
16
high-resolution ptp1b
12
inhibition profiling
12
ptp1b
9
high-performance liquid
8
liquid chromatography-high-resolution
8
chromatography-high-resolution mass
8
mass spectrometry-solid-phase
8
spectrometry-solid-phase extraction-nuclear
8
extraction-nuclear magnetic
8

Similar Publications

Introduction: This article describes the invention of graphene oxide (GO) or reduced graphene oxide (rGO) functionalised with 2-methoxy estradiol. The presence of polar hydroxyl groups enables the binding of 2-ME to GO/rGO through hydrogen bonds with epoxy and hydroxyl groups located on the surface and carbonyl and carboxyl groups located at the edges of graphene flake sheets.

Methods: The patented method of producing the subject of the invention and the research results regarding its anticancer effectiveness via cytotoxicity in an in vivo model (against A375 melanoma and 143B osteosarcoma cells) are described.

View Article and Find Full Text PDF

New C-linked diarylheptanoid dimers as potential α-glucosidase inhibitors evidenced by biological, spectral and theoretical approaches.

Int J Biol Macromol

January 2025

Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China. Electronic address:

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by elevated blood glucose levels, generally due to defects of insulin action or secretion. Inhibition of α-glucosidase, an enzyme responsible for carbohydrate degradation, is a promising strategy for managing postprandial hyperglycemia in diabetic patients. In this study, two new C-linked diarylheptanoid dimers, kaemgalanganols A (1) and B (2), were isolated from K.

View Article and Find Full Text PDF

Epicatechin Influence on Biochemical Modification of Human Erythrocyte Metabolism and Membrane Integrity.

Int J Mol Sci

December 2024

Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy.

Red blood cells (RBCs) are the main cells of the blood, perform numerous functions within the body and are in continuous contact with endogenous and exogenous molecules. In this context, the study aims to investigate the effect of epicatechin (EC) (flavan-3-ols) on the erythrocytes, analyzing the protective effect of the molecule and the action exerted on metabolism and RBC membrane. The effect of EC on RBC viability has been evaluated through the change in hemolysis and methemoglobin, assessing caspase 3 activity and performing a cytofluorometric analysis.

View Article and Find Full Text PDF

Multi Targeted Activity of Cocculus hirsutus through Modulation of DPP-IV and PTP-1B Leading to Enhancement of Glucose Uptake and Attenuation of Lipid Accumulation.

Appl Biochem Biotechnol

January 2025

Tissue Culture and Drug Discovery Laboratory, Department of Biotechnology, Anna University, Chennai, 600 025, India.

Article Synopsis
  • Multi-targeted therapies are increasingly recognized for their effectiveness in treating complex diseases such as Type 2 diabetes and obesity, utilizing multiple mechanisms to enhance benefits while minimizing side effects.
  • The study investigates the potential of Cocculus hirsutus methanol extract (CME) and its hydromethanolic fraction (HMF), revealing significant inhibition of key enzymes related to glucose metabolism and insulin signaling, which indicates their potential in improving metabolic health.
  • HMF was particularly effective, showing improved glucose uptake, increased insulin sensitivity through GLUT4 expression, and reduced lipid accumulation by inhibiting adipogenesis regulators, marking its promise as a therapeutic option.
View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM), a metabolic disorder, has the hallmarks of persistent hyperglycemia, insulin resistance, and dyslipidemia. Protein-tyrosine phosphatase 1B (PTP1B) was found to be overexpressed in many tissues in the case of T2DM and involved in the negative regulation of insulin signaling. So, PTP1B inhibition can act as a therapeutic target for T2DM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!