Background: Heterosis or hybrid vigour is a phenomenon in which hybrid progeny exhibit superior performance compared to their parental inbred lines. Most commercial Chinese cabbage cultivars are F1 hybrids and their level of hybrid vigour is of critical importance and is a key selection criterion in the breeding system.

Results: We have characterized the heterotic phenotype of one F1 hybrid cultivar of Chinese cabbage and its parental lines from early- to late-developmental stages of the plants. Hybrid cotyledons are larger than those of the parents at 4 days after sowing and biomass in the hybrid, determined by the fresh weight of leaves, is greater than that of the larger parent line by approximately 20% at 14 days after sowing. The final yield of the hybrid harvested at 63 days after sowing is 25% greater than the yield of the better parent. The larger leaves of the hybrid are a consequence of increased cell size and number of the photosynthetic palisade mesophyll cells and other leaf cells. The accumulation of plant hormones in the F1 was within the range of the parental levels at both 2 and 10 days after sowing. Two days after sowing, the expression levels of chloroplast-targeted genes in the cotyledon cells were upregulated in the F1 hybrid relative to their mid parent values. Shutdown of chlorophyll biosynthesis in the cotyledon by norflurazon prevented the increased leaf area in the F1 hybrid.

Conclusions: In the cotyledons of F1 hybrids, chloroplast-targeted genes were upregulated at 2 days after sowing. The increased activity levels of this group of genes suggested that their differential transcription levels could be important for establishing early heterosis but the increased transcription levels were transient. Inhibition of the photosynthetic process in the cotyledon reduced heterosis in later seedling stages. These observations suggest early developmental events in the germinating seedling of the hybrid may be important for later developmental vigour and yield advantage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4756405PMC
http://dx.doi.org/10.1186/s12870-016-0734-3DOI Listing

Publication Analysis

Top Keywords

days sowing
24
hybrid
12
hybrid vigour
12
chinese cabbage
12
chloroplast-targeted genes
8
transcription levels
8
days
6
sowing
6
levels
5
molecular cellular
4

Similar Publications

Thriving in adversity: Understanding how maize seeds respond to the challenge of combined cold and high humidity stress.

Plant Physiol Biochem

December 2024

College of Agronomy, Jilin Agricultural University, 2888 Xincheng St, Changchun, 130118, Jilin, PR China; Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences, 1363 Shengtai St, Changchun, 130033, Jilin, PR China. Electronic address:

Extreme conditions, such as cold and high humidity in northeast China's high-latitude maize region, can hinder crop yield and stability during the vegetative stage. However, there is a paucity of research examining the effects of simultaneous cold and high humidity stress on plant responses. In this study, we characterized the acclimation of JD558 (cold- and high humidity-sensitive hybrid) and JD441 (cold- and high humidity-tolerant hybrid) to stress at sowing caused by cold (4 °C), high humidity (25%), and their combined stress for five days, using physiological measurements and metabolomics during the stress treatments and recovery stages.

View Article and Find Full Text PDF

Background: Anaerobic germination is a critical trait for rice cultivation, particularly in regions that experience flooding or waterlogging immediately after sowing. Under direct-seeded conditions, where rice is sown directly into the field without prior transplantation, the ability of seeds to germinate in anaerobic (oxygen-deficient) conditions becomes essential for successful crop establishment. This trait is especially relevant in areas prone to waterlogging, were traditional methods of rice cultivation, such as puddled transplanting, may be less viable.

View Article and Find Full Text PDF

Further studies are necessary to evaluate not only the effectiveness of preemergent herbicides for weed control and selectivity in soybeans but also the potential carryover damage to crops planted in succession, such as sorghum and maize. This study aimed to assess the efficacy of preemergent herbicides in controlling L. and L.

View Article and Find Full Text PDF
Article Synopsis
  • Phytophthora infestans is a serious pathogen causing late blight disease in potatoes, impacting them throughout their growth stages and spreading quickly.
  • Field experiments in the 2020-21 and 2021-22 winter seasons tested the effectiveness of novel fungicides, showing that certain treatments resulted in the lowest disease incidence and highest tuber yields.
  • The study found that late blight is positively correlated with temperature, humidity, and sunlight, and the use of specific fungicides significantly reduced disease severity and increased profitability compared to untreated controls.
View Article and Find Full Text PDF

Comparative Performance of Ionic and Agro-Physiological Traits for Detecting Salt Tolerance in Wheat Genotypes Grown in Real Field Conditions.

Life (Basel)

November 2024

Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, KSA, P.O. Box 2460, Riyadh 11451, Saudi Arabia.

Studying the physiological mechanisms underlying the traits associated with salt tolerance in genotypes could lead to the discovery of new genetic resources for salt tolerance. In this study, the mechanisms of salt tolerance were evaluated, based on ionic, physiological, and agronomic traits in four varieties that differ in their salt tolerance and in 18 F recombinant inbred lines (RILs) grown in real field conditions. The salt tolerance of plant materials was assessed under both normal (3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!