Head and neck squamous cell carcinoma (HNSCC) has a high capacity for invasion. To identify microRNAs (miRNAs) that regulate HNSCC invasion, we compared miRNA expression profiles between a parent HNSCC cell line and a highly invasive clone. The miR-200 family and miR-203 were downregulated in the clone. Here we focused on the role of miR-203 in invasion and epithelial-mesenchymal transition (EMT) induction in HNSCC. miR-203 was downregulated during EMT induction. Moreover, ectopic overexpression of miR-203 suppressed the invasion and induced mesenchymal-epithelial transition (MET) in HNSCC cells. Interestingly, we identified NUAK family SNF1-like kinase 1 (NUAK1) as a novel target gene of miR-203 by cyclopedic analysis using anti-Ago2 antibody. Increased expression of NUAK1 was observed during EMT induction, and ectopic expression of miR-203 delayed EMT induction by suppressing NUAK1 expression. Moreover, NUAK1 overexpression promoted the invasion of HNSCC cells. Importantly, NUAK1 expression was well correlated with poor differentiation, invasiveness, and lymph node metastasis in HNSCC cases. Overall, miR-203 has a tumor-suppressing role in invasion and EMT induction by targeting NUAK1 in HNSCC, suggesting miR-203 as a potential new diagnostic and therapeutic target for the treatment of HNSCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4884988PMC
http://dx.doi.org/10.18632/oncotarget.6972DOI Listing

Publication Analysis

Top Keywords

emt induction
20
hnscc
9
invasion epithelial-mesenchymal
8
epithelial-mesenchymal transition
8
induction targeting
8
targeting nuak1
8
head neck
8
mir-203
8
mir-203 downregulated
8
induction ectopic
8

Similar Publications

In this study, an advanced nanofiber breast cancer model was developed and systematically characterized including physico-chemical, cell-biological and biophysical parameters. Using electrospinning, the architecture of tumor-associated collagen signatures (TACS5 and TACS6) was mimicked. By employing a rotating cylinder or static plate collector set-up, aligned fibers (TACS5-like structures) and randomly orientated fibers (TACS6-like structures) fibers were produced, respectively.

View Article and Find Full Text PDF

Reprogramming of fibroblasts into cancer-associated fibroblasts via IGF2-mediated autophagy promotes metastasis of lung cancer cells.

iScience

December 2024

Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China.

Cancer-associated fibroblasts (CAFs) are major component of stromal cells. Growing evidence suggests that CAFs promote tumor growth and metastasis; however, the reprogramming of normal fibroblasts (NFs) into CAFs by tumor cells still remains largely unknown. In this study, we found that non-small cell lung cancer (NSCLC) cells activated NFs into CAFs via autophagy induction.

View Article and Find Full Text PDF

The tumor suppressor fragile histidine triad (FHIT) is frequently lost in non-small cell lung cancer (NSCLC). We previously showed that a down-regulation of FHIT causes an up-regulation of the activity of HER2 associated to an epithelial-mesenchymal transition (EMT) and that lung tumor cells harboring a FHIT/pHER2 phenotype are sensitive to anti-HER2 drugs. Here, we sought to decipher the FHIT-regulated HER2 signaling pathway in NSCLC.

View Article and Find Full Text PDF

Objectives:  Epithelial-mesenchymal transition (EMT) is a process that shifts cellular phenotype. It is linked to several different inflammatory diseases including periodontitis. This study was conducted to investigate the involvement of the EMT process in an experimental periodontitis (EP) model.

View Article and Find Full Text PDF

The Role of WNT5a and TGF-β1 in Airway Remodelling and Severe Asthma.

Allergy

January 2025

Department of Respiratory Sciences, College of Life Sciences, and NIHR Biomedical Research Centre (Respiratory Theme), Glenfield Hospital, Leicester, UK.

Background: Airway remodelling is a feature of severe asthma with airway epithelial damage observed frequently. We evaluated the role of WNT5a and TGF-β in asthmatic airway biopsies and in sputum and bronchial brushings assessed their role in remodelling.

Methods: WNT5a and TGF-β protein expression were assessed in the lamina propria epithelium of people with asthma (GINA 1-3, n-8 and GINA 4-5, n-14) and healthy subjects (n-9), alongside relevant remodelling markers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!