Cascade DNA logic device programmed ratiometric DNA analysis and logic devices based on a fluorescent dual-signal probe of a G-quadruplex DNAzyme.

Chem Commun (Camb)

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China. and University of Chinese Academy of Sciences, Beijing, 100039, China.

Published: March 2016

Herein, two fluorescence sensitive substrates of G-quadruplex/hemin DNAzyme with inverse responses (Scopoletin and Amplex Red) were simultaneously used in one homogeneous system to construct a cascade advanced DNA logic device for the first time (a functional logic device (a three input based DNA calliper) cascade with an advanced non-arithmetic logic gate (1 to 2 decoder)). This cascade logic device was applied to label-free ratiometric target DNA detection and length measurement.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5cc10556kDOI Listing

Publication Analysis

Top Keywords

logic device
16
dna logic
8
cascade advanced
8
logic
6
cascade
4
cascade dna
4
device
4
device programmed
4
programmed ratiometric
4
dna
4

Similar Publications

In this manuscript, an all-optical modulation photodetector based on a CdS/graphene/Ge sandwich structure is designed. In the presence of the modulation (near-infrared) light, the Fermi level of the graphene channel shifts, allowing for the tuning of the visible light response speed as well as achieving a broad responsivity range from negative (-3376 A/W) to positive (3584 A/W) response. Based on this, logical operations are performed by adjusting the power of the modulation light superimposed with the signal light.

View Article and Find Full Text PDF

In the era of artificial intelligence, there has been a rise in novel computing methods due to the increased demand for rapid and effective data processing. It is of great significance to develop memristor devices capable of emulating the computational neural network of the brain, especially in the realm of artificial intelligence applications. In this work, a memristor based on NiAl-layered double hydroxides is presented with excellent electrical performance, including analog resistive conversion characteristics and the effect of multi-level conductivity modulation.

View Article and Find Full Text PDF

Introduction: Accurate detection and recognition of tea bud images can drive advances in intelligent harvesting machinery for tea gardens and technology for tea bud pests and diseases. In order to realize the recognition and grading of tea buds in a complex multi-density tea garden environment.

Methods: This paper proposes an improved YOLOv7 object detection algorithm, called YOLOv7-DWS, which focuses on improving the accuracy of tea recognition.

View Article and Find Full Text PDF

A new photopolymerizable organic-inorganic (O-I) hybrid sol-gel material, AUP@SiO-184, has been synthesized and utilized as a gate dielectric in flexible organic thin-film transistors (OTFTs). The previously reported three-arm alkoxy-functionalized silane amphiphilic polymer has yielded stable O-I hybrid materials comprising uniformly dispersed nanoparticles in the sol state. In this study, a photosensitizer was introduced, facilitating curing effects under ultraviolet light.

View Article and Find Full Text PDF

Optoelectronic synapse devices (OESDs) inspired by human visual systems enable to integration of light sensing, memory, and computing functions, greatly promoting the development of in-sensor computing techniques. Herein, dual-mode integration of bipolar response photodetectors (PDs) and artificial optoelectronic synapses based on ZnO/SnSe heterojunctions are presented. The function of the fabricated device can be converted between the PDs and OESDs by modulating the light intensity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!