In the mammalian brain, the differentiation of neural cells and the developmental organization of the underlying circuitry are influenced by steroid hormones. The estrogen 17-β estradiol (E2) is one of the most potent regulators of neural growth during prenatal life, synthetized locally from steroid precursors including prenatal testicular testosterone. Estradiol promotes brain differentiation counting sexually dimorphic neural circuits by binding to the estrogen receptors, ER-α and ER-β. The cerebellum has been described as a site of estrogen action and a potentially sexually dimorphic area. The goal of this study was to analyze the capacity of E2 to affect the growth of male and female fetal bovine cerebellar granule. We performed primary cultures of fetal cerebellar granules, and verified the mRNA expression of the ER-α and ER-β in both sexes. Moreover, the distribution of ERs in the male and female cerebellar granules of the second fetal stage was characterized by immunohistochemistry. We measured morphological parameters in presence (or absence) of estradiol administration, focusing on the variations of the dendritic branching pattern of granule neurons. By using the nonparametric combination and permutation testing approach, we proposed a sophisticated multivariate statistical analysis to demonstrate that E2 induces multifarious and dimorphic changes in the granule cells. E2 exerts trophic effects in both female and male granules and this effect is stronger in female. Male granules treated with E2 became similar to female control granule. Bos taurus species has a long gestation and a large brain that offers an interesting alternative in comparative neuroscience.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000444528DOI Listing

Publication Analysis

Top Keywords

trophic effects
8
bovine cerebellar
8
cerebellar granule
8
granule cells
8
brain differentiation
8
sexually dimorphic
8
er-α er-β
8
male female
8
cerebellar granules
8
female male
8

Similar Publications

Legacy contaminants tied to energy production are a worldwide concern. Coal combustion residues (CCRs) contain high concentrations of potentially toxic trace elements such as arsenic (As), mercury (Hg), and selenium (Se), which can persist for decades after initial contamination. CCR disposal methods, including aquatic settling basins and landfills, can facilitate environmental exposure through intentional and accidental releases.

View Article and Find Full Text PDF

Under an adaptive hypothesis, the reciprocal influence between mutualistic plants and frugivores is expected to result in suites of matching frugivore and plant traits that structure fruit consumption. Recent work has suggested fruit traits can represent adaptations to broad groups of functionally similar frugivores, but the role of frugivore traits and within-species variation in structuring fruit consumption is less understood. To address these knowledge gaps, we assess the presence of reciprocal trait matching for the mutualistic ecological network comprising of bats that feed on and disperse seeds.

View Article and Find Full Text PDF

Can biodegradable plastics mitigate plastamination? Feedbacks from marine organisms.

J Hazard Mater

January 2025

Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Via Ammiraglio Ferdinando Acton 55, Naples 80133, Italy; Department of Biology University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, Naples 80126, Italy; Institute of Water Research (IRSA) CNR Taranto, Italy. Electronic address:

The EU plastic strategy aims to reduce the environmental impact of the increasing plastic production, by replacing petrochemical-based polymers with biodegradable ones. But this mitigation measure for the plastamination might, in turn, generate bio-based microplastics in environments that are not necessarily safe. Biodegradable and non-biodegradable plastics, polylactic acid (PLA) and polypropylene (PP) respectively, and their leachates were used for testing microplastic (MP) effects on seven marine species from different trophic levels, including bacteria, algae, rotifers, copepods, amphipods and branchiopods.

View Article and Find Full Text PDF

Forestry activities, i.e., drainage system maintenance or regeneration fellings may alter the water quality in catchments as well as in runoff and induce risks of acidification.

View Article and Find Full Text PDF

Photosynthetic eukaryotic microalgae are key primary producers in the Antarctic sea ice environment. Anticipated changes in sea ice thickness and snow load due to climate change may cause substantial shifts in available light to these ice-associated organisms. This study used a laboratory-based experiment to investigate how light levels, simulating different sea ice and snow thicknesses, affect fatty acid (FA) composition in two ice associated microalgae species, the pennate diatom Nitzschia cf.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!