AI Article Synopsis

Article Abstract

The Jagn1 protein was indentified in a SILAC proteomic screen of proteins that are increased in insulinoma cells expressing a folding-deficient proinsulin. Jagn1 mRNA was detected in primary rodent islets and in insulinoma cell lines and the levels were increased in response to ER stress. The function of Jagn1 was assessed in insulinoma cells by both knock-down and overexpression approaches. Knock-down of Jagn1 caused an increase in glucose-stimulated insulin secretion resulting from an increase in proinsulin biosynthesis. In contrast, overexpression of Jagn1 in insulinoma cells resulted in reduced cellular proinsulin and insulin levels. Our results identify a novel role for Jagn1 in regulating proinsulin biosynthesis in pancreatic β-cells. Under ER stress conditions Jagn1 is induced which might contribute to reducing proinsulin biosynthesis, in part by helping to relieve the protein folding load in the ER in an effort to restore ER homeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4755616PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0149177PLOS

Publication Analysis

Top Keywords

proinsulin biosynthesis
16
insulinoma cells
12
jagn1
8
jagn1 induced
8
response stress
8
proinsulin
6
induced response
4
stress regulates
4
regulates proinsulin
4
biosynthesis
4

Similar Publications

Aim: Pancreatic β-cells are susceptible to inflammation, leading to decreased insulin production/secretion and cell death. Previously, we have identified a novel triceps-derived myokine, DECORIN, which plays a pivotal role in skeletal muscle-to-pancreas interorgan communication. However, whether DECORIN can directly impact β-cell function and susceptibility to inflammation remains unexplored.

View Article and Find Full Text PDF

Endurance exercise is widely recognized for its role in mitigating insulin resistance, yet the precise mechanisms remain unclear. In this Classics in Diabetes article, we revisit the article by Amati et al., "Skeletal Muscle Triglycerides, Diacylglycerols, and Ceramides in Insulin Resistance: Another Paradox in Endurance-Trained Athletes?" Published in the October 2011 issue of Diabetes, this article was among the first to highlight the nuanced roles of exercise-induced changes in bioactive lipids such as ceramide and diacylglycerol (DAG) in insulin signaling.

View Article and Find Full Text PDF

mTOR Ser1261 is an AMPK-dependent phosphosite in mouse and human skeletal muscle not required for mTORC2 activity.

FASEB J

January 2025

August Krogh Section for Human and Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.

The kinases AMPK, and mTOR as part of either mTORC1 or mTORC2, are major orchestrators of cellular growth and metabolism. Phosphorylation of mTOR Ser1261 is reportedly stimulated by both insulin and AMPK activation and a regulator of both mTORC1 and mTORC2 activity. Intrigued by the possibilities that Ser1261 might be a convergence point between insulin and AMPK signaling in skeletal muscle, we investigated the regulation and function of this site using a combination of human exercise, transgenic mouse, and cell culture models.

View Article and Find Full Text PDF

Background: Lower maternal insulin sensitivity during pregnancy is associated with greater fetal adiposity. Physical activity can improve insulin sensitivity, but it is not known if physical behaviours influence the known association of maternal insulin sensitivity with offspring adiposity. This study aimed to investigate the moderating impact of physical behaviours on this association.

View Article and Find Full Text PDF

Role of transforming growth factor-β1 in regulating adipocyte progenitors.

Sci Rep

January 2025

Research Center for Pre-Disease Science, Faculty of Education and Research Promotion, University of Toyama, Toyama, 930-0194, Japan.

Adipose tissue (AT) metabolism involves coordinating various cells and cellular processes to regulate energy storage, release, and overall metabolic homeostasis. Therein, macrophage and its cytokine are important in controlling tissue homeostasis. Among cytokines, the role of transforming growth factor-β1 (Tgf-β1), a cytokine abundantly expressed in CD206 M2-like macrophage and correlated with the expansion of AT and fibrosis, in AT metabolism, remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!