The surface-active ions tetraphenylarsonium (Ph4As(+)) and tetraphenylboron (Ph4B(-)) have a similar structure but opposite charge. At the solution-air interface, the two ions affect the surface tension in an identical manner, yet sum-frequency generation (SFG) spectra reveal an enhanced surface propensity for Ph4As(+) compared with Ph4B(-), in addition to opposite alignment of interfacial water molecules. At the water-oil interface, the interfacial tension is 7 mN/m lower for Ph4As(+) than for Ph4B(-) salts, but this can be fully accounted for by the different bulk solubility of these ions in the hydrophobic phase, rather than inherently different surface activities. The different solubility can be accounted for by differences in electronic structure, as evidenced by quantum chemical calculations and NMR studies. Our results show that the surface propensity concluded from SFG spectroscopy does not necessarily correlate with interfacial adsorption concluded from thermodynamic measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.5b02646DOI Listing

Publication Analysis

Top Keywords

surface propensity
8
oppositely charged
4
ions
4
charged ions
4
ions water-air
4
water-air water-oil
4
water-oil interfaces
4
interfaces contrasting
4
contrasting molecular
4
molecular picture
4

Similar Publications

Titanium alloy is known for its low thermal conductivity, small elastic modulus, and propensity for work hardening, posing challenges in predicting surface quality post high-speed milling. Since surface quality significantly influences wear resistance, fatigue strength, and corrosion resistance of parts, optimizing milling parameters becomes crucial for enhancing service performance. This paper proposes a milling parameter optimization method utilizing the snake algorithm with multi-strategy fusion to improve surface quality.

View Article and Find Full Text PDF

Oxygen-Driven Atom Transfer Radical Polymerization.

J Am Chem Soc

January 2025

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.

In traditional atom transfer radical polymerization (ATRP), oxygen must be meticulously eliminated due to its propensity to quench radical species and halt the polymerization process. Additionally, oxygen oxidizes the lower-valent Cu catalyst, compromising its ability to activate alkyl halides and propagate polymerization. In this study, we present an oxygen-driven ATRP utilizing alkylborane compounds, a method that not only circumvents the need for stringent oxygen removal but also exploits oxygen as an essential cofactor to promote polymerization.

View Article and Find Full Text PDF

Typical epidermodysplasia verruciformis (EV) is a rare, autosomal recessive disorder characterized by an unusual susceptibility to infection with specific skin-trophic types of human papillomavirus, principally betapapillomaviruses, and a propensity for developing malignant skin tumors in sun exposed regions. Its etiology reflects biallelic loss-of-function mutations in TMC6 (EVER1), TMC8 (EVER2) or CIB1. A TMC6-TMC8-CIB1 protein complex in the endoplasmic reticulum is hypothesized to be a restriction factor in keratinocytes for βHPV infection.

View Article and Find Full Text PDF

Impact of depth of body cavity at the upper-right portion of the abdomen on open and laparoscopic liver resection of segment 7.

Langenbecks Arch Surg

January 2025

Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University, Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan.

Purpose: The impact of body-cavity depth on open (OLR) and laparoscopic liver resection (LLR) of segment 7 remains unclear. Therefore, we investigated the influence of body-cavity depth at the upper-right portion of the abdomen on LLR and OLR of segment 7.

Methods: In total, 101 patients who underwent segment-7 liver resection over 2010-2023 were included.

View Article and Find Full Text PDF

Liquid-liquid phase separation driven by charge heterogeneity.

Commun Phys

December 2024

Institut für Theoretische Physik, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria.

Despite the intrinsic charge heterogeneity of proteins plays a crucial role in the liquid-liquid phase separation (LLPS) of a broad variety of protein systems, our understanding of the effects of their electrostatic anisotropy is still in its early stages. We approach this issue by means of a coarse-grained model based on a robust mean-field description that extends the DLVO theory to non-uniformly charged particles. We numerically investigate the effect of surface charge patchiness and net particle charge on varying these features independently and with the use of a few parameters only.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!